Skip to main content
Log in

Zirconia-MWCNT nanocomposites for biomedical applications obtained by colloidal processing

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Zirconia ceramics are widely used as femoral heads, but case studies show that delayed failure can occur in vivo due to crack propagation. The addition of carbon nanotubes (CNT) is aimed to avoid the slow crack propagation and to enhance the toughness of the ceramic material used for prostheses. However, to really enhance the mechanical properties of the material it is necessary to achieve a uniform distribution of the CNT in the zirconia matrix. Colloidal processing has demonstrated to be suitable for obtaining ceramic-based composites with homogeneous distribution of the phases and high green density. This work compares the colloidal behavior of the as-received multi wall carbon nanotubes (ar-MWCNT) and the partially coated MWCNT (pc-MWCNT) when immersed in a nanozirconia matrix. With pc-MWCNT an improvement in the dispersion is proved. Moreover, the sintered samples that contain pc-MWCNT show higher density, lower grain size, improved toughness and enhanced hardness under the same sintering cycle when compared to the samples with ar-MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Deville S, Gremillard L, Chevalier J, Fantozzi G. A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia. J Biomed Mater Res B Appl Biomater. 2005;72:239–45.

    PubMed  Google Scholar 

  2. Matsui K, Horikoshi H, Ohmichi N, Ohgai M. Cubic-formation and grain-growth mechanism in tetragonal zirconia polycrystal. J Am Ceram Soc. 2003;86:1401–8.

    Article  CAS  Google Scholar 

  3. Chevalier J. What future for zirconia as a biomaterial? Biomaterials. 2006;27:535–43.

    Article  CAS  PubMed  Google Scholar 

  4. Curtin WA, Sheldon BW. CNT-reinforced ceramics and metals. Mater Today. 2004;7:44–9.

    Article  CAS  Google Scholar 

  5. Mayo M. Processing of nanocrystalline ceramics from ultrafine powders. Int Mater Rev. 1996;41:85–115.

    CAS  Google Scholar 

  6. Streicher RM, Schmidt M, Fiorito S. Nanosurfaces and nanostructures for artificial orthopedic implants. Nanomedicine. 2007;2:861–74.

    Article  CAS  PubMed  Google Scholar 

  7. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  ADS  Google Scholar 

  8. Zhan GD, Mukherjee AK. Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical, and thermal Properties. Int J Appl Ceram Technol. 2004;1:161–9.

    CAS  Google Scholar 

  9. Zhan GD, Mukherjee AK. Processing and characterization of nanoceramic composites with interesting structural and functional properties. Rev Adv Mater Sci. 2005;10:185–96.

    CAS  Google Scholar 

  10. Wei T, Fan Z, Luo G, Wei F. A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness. Mater Lett. 2008;62:641–4.

    Article  CAS  Google Scholar 

  11. Cha SI, Kim KT, Le KH, Mo CB, Hong SH. Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scripta Mater. 2005;53:793–7.

    Article  CAS  Google Scholar 

  12. Zhan GD, Kuntz JD, Wan J, Mukherjee K. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nature Mater. 2003;2:38–42.

    Article  CAS  ADS  Google Scholar 

  13. Balani K, Zhang T, Karakoti A, Li WZ, Seal S, Agarwal A. In situ carbon nanotube reinforcements in plasma sprayed aluminum oxide nanocomposite coating. Acta Mater. 2008;56:571–9.

    Article  CAS  Google Scholar 

  14. Fan J, Zhao D, Wu M, Xu Z, Song J. Preparation and microstructure of multi-wall carbon nanotubes toughened Al2O3 composite. J Am Ceram Soc. 2006;89:750–3.

    Article  CAS  Google Scholar 

  15. Sun J, Gao L, Iwasa M, Nakayama T, Niihara K. Failure investigation of carbon nanotube/3Y-TZP nanocomposites. Ceram Int. 2005;31:1131–4.

    Article  CAS  Google Scholar 

  16. Duszová A, Dusza J, Tomásek K, Blugan G, Kuebler J. Microstructure and properties of carbon nanotube/zirconia composite. J Eur Ceram Soc. 2008;28:1023–7.

    Article  Google Scholar 

  17. Garmendia N, Santacruz I, Moreno R, Obieta I. Slip casting of nanozirconia/MWCNT composites using a heterocoagulation process. J Eur Ceram Soc. 2009;29:1939–45.

    Article  CAS  Google Scholar 

  18. Sun J, Gao L. Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation. Carbon. 2003;41:1063–8.

    Article  CAS  Google Scholar 

  19. Geuzens E, Vanhoyland G, Haenb JD, Mullens S, Luyten J, Van Bael MK, et al. Synthesis of zirconia-alumina and alumina-zirconia core-shell particles via a heterocoagulation mechanism. J Eur Ceram Soc. 2006;26:3133–8.

    Article  CAS  Google Scholar 

  20. Garmendia N, Bilbao L, Múñoz R, Imbuluzqueta G, García A, Bustero I, et al. Zirconia coating of carbon nanotubes by a hydrothermal method. J Nanosci Nanotechnol. 2008;8:5678–83.

    Article  CAS  PubMed  Google Scholar 

  21. Garmendia N, Arteche A, García A, Bustero I, Obieta I. XRD study of the effect of the processing variables on the synthesis of nanozirconia in the presence of MWCNT. J Compos Mater. 2009;43:247–56.

    Article  CAS  Google Scholar 

  22. Garmendia N, Bilbao L, Muñoz R, Goikoetxea L, García A, Bustero I, et al. Nanozirconia partially coated MWNT: nanostructural characterization and cytotoxicity and lixiviation study. Key Eng Mater. 2008;361:775–8.

    Article  Google Scholar 

  23. Sanchez-Paisal Y, Sanchez-Portal D, Garmendia N, Muñoz R, Obieta I, Arbiol J, et al. Zr-metal adhesion on graphenic nanostructures. Appl Phys Lett. 2008;93:053101.

    Article  ADS  Google Scholar 

  24. Jiang D, Thomson K, Kuntz JD, Ager JW, Mukherjee AK. Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina based nanocomposite. Scripta Mater. 2007;56:959–62.

    Article  CAS  Google Scholar 

  25. Padture NP, Curtin WA. Comment on “Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina based nanocomposite”. Scripta Mater. 2008;58:989–90.

    Article  CAS  Google Scholar 

  26. Jiang D, Mukherjee AK. Response to comment on “Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina based nanocomposite”. Scripta Mater. 2008;58:991–3.

    Article  CAS  Google Scholar 

  27. Duszová A, Dusza J, Tomásek K, Morgiel J, Blugan GS, Kübler J. Zirconia/carbon nanofiber composite. Scripta Mater. 2008;58:520–3.

    Article  Google Scholar 

  28. Gatto A. Critical evaluation of indentation fracture toughness measurements with Vickers indenter on ceramic matrix composite tools. J Mat Proc Tech. 2006;174:67–73.

    Article  CAS  Google Scholar 

  29. Liang KM, Torrecillas R, Orange G, Fantozzi G. Determination of K(ISCC) by indentation in ceramics. J Mat Sci. 1990;25:5077–80.

    Article  CAS  ADS  Google Scholar 

  30. Benzaid R, Chevalier J, Saâdoui M, Fantozzi G, Nawa M, Diaz LA, et al. Fracture toughness and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications. Biomaterials. 2008;5:3636–41.

    Article  Google Scholar 

  31. Chevalier J, De Aza AH, Fantozzi G, Schehl M, Torrecillas R. Extending the lifetime of orthopaedic implants. Adv Mater. 2000;12:1619–21.

    Article  CAS  Google Scholar 

  32. Anstis GR, Chantikul P, Lawn BR, Marshal DB. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc. 1981;64:533–8.

    Article  CAS  Google Scholar 

  33. Fengqiu T, Xiaoxian H, Yufeng Z, Jingkun G. Effect of dispersants on surface chemical properties of nanozirconia suspensions. Ceram Int. 2000;26:93–7.

    Article  Google Scholar 

  34. Yamamoto G, Omori M, Hashida T, Kimura H. A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnol. 2008;19:315708–14.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Supported by Spanish Ministry of Science and Innovation (project CIT-420000-2008-7 and Ramón y Cajal fellowship, RYC-2008-03523), Basque Government (PI-2004-2, BF105.R2.555 and Etortek: Nanomaterials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Garmendia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garmendia, N., Santacruz, I., Moreno, R. et al. Zirconia-MWCNT nanocomposites for biomedical applications obtained by colloidal processing. J Mater Sci: Mater Med 21, 1445–1451 (2010). https://doi.org/10.1007/s10856-010-4023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4023-7

Keywords

Navigation