Skip to main content
Log in

Synergistic effect of hydrophobic and anionic surface groups triggers blood coagulation in vitro

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biomaterial induced coagulation encompasses plasmatic and cellular processes. The functional loss of biomedical devices possibly resulting from these thrombotic reactions motivates the need for a better understanding of processes occurring at blood–biomaterial interfaces. Well defined model surfaces providing specific chemical–physical properties (self assembled monolayers (SAMs)) displaying hydrophobic or/and acidic terminal groups were used to uncover initial mechanisms of biomaterial induced coagulation. We investigated the influence of electrical charge and wettability on platelet- and contact activation, the two main actors of blood coagulation, which are often considered as separate mechanisms in biomaterials research. Our results show a dependence of contact activation on acidic surface groups and a correlation of platelet adhesion to surface hydrophobicity. Clot formation resulting from the interplay of blood platelets and contact activation was only found on surfaces combining both acidic and hydrophobic surface groups but not on monolayers displaying extreme hydrophobic/acidic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Krishnan A, Cha P, Liu YH, Allara D, Vogler EA. Interfacial energetics of blood plasma and serum adsorption to a hydrophobic self-assembled monolayer surface. Biomaterials. 2006;27:3187–94.

    Article  CAS  PubMed  Google Scholar 

  2. Blombäck B, Bark N. Fibrinopeptides and fibrin gel structure. Biophys Chem. 2004;112:147–51.

    Article  PubMed  Google Scholar 

  3. Zhuo R, Siedlecki CA, Vogler EA. Autoactivation of blood factor XII at hydrophilic and hydrophobic surfaces. Biomaterials. 2006;27:4325–32.

    Article  CAS  PubMed  Google Scholar 

  4. Rodrigues SN, Goncalves IC, Martins MC, Barbosa MA, Ratner BD. Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials. 2006;27:5357–67.

    Article  CAS  PubMed  Google Scholar 

  5. Martins CL, Ratner BD, Barbosa MA. Protein adsorption on mixtures of hydroxyl- and methylterminated alkanethiols self-assembled monolayers. J Biomed Mater Res. 2003;67A:158–71.

    Article  CAS  Google Scholar 

  6. Benesch J, Svendheim S, Svensson SCT, Valiokas R, Liedberg B, Tengvall P. Protein adsorption to oligo (ethylene glycol) self-assembled monolayers: Experiments with fibrinogen, heparinized plasma, and serum. J Biomater Sci Polym Ed. 2001;12:581–97.

    Article  CAS  PubMed  Google Scholar 

  7. Lestelius M, Liedberg B, Tengvall P. In vitro plasma protein adsorption on w-functionalized alkanethiolate self-assembled monolayers. Langmuir. 1997;13:5900–8.

    Article  CAS  Google Scholar 

  8. Faucheux N, Schweiss R, Lutzow K, Werner C, Groth T. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials. 2004;25:2721–30.

    Article  CAS  PubMed  Google Scholar 

  9. Barbosa JN, Barbosa MA, Águas AP. Inflammatory responses and cell adhesion to self-assembled monolayers of alkanethiolates on gold. Biomaterials. 2004;25:2557–63.

    Article  CAS  PubMed  Google Scholar 

  10. Sperling C, Schweiss RB, Streller U, Werner C. In vitro hemocompatibility of self-assembled monolayers displaying various functional groups. Biomaterials. 2005;26:6547–57.

    Article  CAS  PubMed  Google Scholar 

  11. Chuang W-H, Lin J-C. Surface characterization and platelet adhesion studies for the mixed self-assembled monolayers with amine and carboxylic acid terminated functionalities. J Biomed Mater Res A. 2007;82A:820–30.

    Article  CAS  Google Scholar 

  12. Sperling C, Fischer M, Maitz FM, Werner C. Blood coagulation on biomaterial requires the combination of distinct activation processes. Biomaterials. 2009;30:4447–56.

    Article  CAS  PubMed  Google Scholar 

  13. Rodahl M, Hook F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, et al. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss. 1997;107:229–46.

    Article  CAS  PubMed  Google Scholar 

  14. Grunkemeier JM, Tsai WB, Horbett TA. Hemocompatibility of treated polystyrene substrates: Contact activation, platelet adhesion, and procoagulant activity of adherent platelets. J Biomed Mater Res. 1998;41:657–70.

    Article  CAS  PubMed  Google Scholar 

  15. Racher A. LDH assay. In: Doyle A, Griffiths JB, editors. Cell and tissue culture: laboratory procedures in biotechnology. Chichester, New York, Weinheim: Wiley; 1998. p. 71–5.

    Google Scholar 

  16. Streller U, Sperling C, Hubner J, Hanke R, Werner C. Design and evaluation of novel blood incubation systems for in vitro hemocompatibility assessment of planar solid surfaces. J Biomed Mater Res. 2003;66B:379–90.

    Article  CAS  Google Scholar 

  17. Sperling C, Maitz MF, Talkenberger S, Gouzy M-F, Groth T, Werner C. In vitro blood reactivity to hydroxylated and non-hydroxylated polymer surfaces. Biomaterials. 2007;28:3617–25.

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Wang J, Paszti Z, Wang F, Schrauben JN, Tarabara VV, et al. Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy. Anal Bioanal Chem. 2007;388:65–72.

    Article  CAS  PubMed  Google Scholar 

  19. Evans-Nguyen KM, Schoenfisch MH. Fibrin proliferation at model surfaces: Influence of surface properties. Langmuir. 2005;21:1691–4.

    Article  CAS  PubMed  Google Scholar 

  20. Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A survey of structure–property relationships of surfaces that resist the adsorption of protein. Langmuir. 2001;17:5605–20.

    Article  CAS  Google Scholar 

  21. Miyamoto M, Sasakawa S, Ozawa T, Kawaguchi H, Ohtsuka Y. Mechanisms of blood coagulation induced by latex particles and the roles of blood cells. Biomaterials. 1990;11:385–8.

    Article  CAS  PubMed  Google Scholar 

  22. Liebe S. Effect of ampholines on blood coagulation: 1. Activation of factor VIII (antihemophilic globulin A). Folia Haematol Int Mag Klin Morphol Blutforsch. 1975;102:454–61.

    CAS  PubMed  Google Scholar 

  23. Sagnella S, Mai-Ngam K. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials. Colloids Surf B Biointerfaces. 2005;42:147–55.

    Article  CAS  PubMed  Google Scholar 

  24. Vroman L. The life of an artificial device in contact with blood. Bull N Y Acad Med. 1988;64:352–7.

    CAS  PubMed  Google Scholar 

  25. Sanchez J, Lundquist PB, Elgue G, Larsson R, Olsson P. Measuring the degree of plasma contact activation induced by artificial materials. Thromb Res. 2002;105:407–12.

    Article  CAS  PubMed  Google Scholar 

  26. Kozin F, Cochrane CG. The contact activation system of plasma—biochemistry and pathophysiology. In: Gallin JI, Goldstein IM, Snyderman R, editors. Inflammation: basic principles and clinical correlates. 2nd ed. New York: Raven Press; 1992. p. 101–20.

    Google Scholar 

  27. Yarovaya GA, Blokhina TB, Neshkova EA. Contact system. New concepts on activation mechanisms and bioregulatory functions. Biochemistry. 2002;67:16–29.

    Google Scholar 

  28. Vogler EA, Graper JC, Harper GR, Sugg HW, Lander LM, Brittain WJ. Contact activation of the plasma coagulation cascade. I. Procoagulant surface chemistry and energy. J Biomed Mater Res. 1995;29:1005–16.

    Article  CAS  PubMed  Google Scholar 

  29. Schulman G, Hakim R, Arias R, Silverberg M, Kaplan AP, Arbeit L. Bradykinin generation by dialysis membranes: possible role in anaphylactic reaction. J Am Soc Nephrol. 1993;3:1563–9.

    CAS  PubMed  Google Scholar 

  30. Gailani D, Renné T. Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol. 2007;27:2507–13.

    Article  CAS  PubMed  Google Scholar 

  31. Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev. 2007;21:99–111.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft for funding (DFG SP 966/2-1) and acknowledge the technical support of Grit Eberth, who helped in SAM preparation and performance of hemocompatibility assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, M., Sperling, C. & Werner, C. Synergistic effect of hydrophobic and anionic surface groups triggers blood coagulation in vitro. J Mater Sci: Mater Med 21, 931–937 (2010). https://doi.org/10.1007/s10856-009-3912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3912-0

Keywords

Navigation