Skip to main content
Log in

Excimer laser chemical ammonia patterning on PET film

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Laser is a promising technique used for biopolymer surface modification with micro and/or nano features. In this work, a 193 nm excimer laser was used for poly (ethylene terephthalate) (PET) surfaces chemical patterning. The ablation threshold of the PET film used in the experiments was 62 mJ/cm2 measured before surface modification. Surface chemical patterning was performed by irradiating PET film in a vacuum chamber filled with ammonia at the flux of 10, 15, 20, 25 ml/min. Roughness of the surface characterized by profilometry showed that there were no significant observed change after modification comparing original film. But the hydrophilicity of the surface increased after patterning and a minimum water contact angle was obtained at the gas flux of 20 ml/min. FT-IR/ATR results showed the distinct amino absorption bands presented at 3352 cm−1and 1613 cm−1 after modification and XPS binding energies of C1s at 285.5 eV and N1s at 399.0 eV verified the existence of C–N bond formation on the PET film surface. Tof-SIMS ions mapping used to identify the amine containing fragments corroborates that amino grafting mainly happened inside the laser irradiation area of the PET surface. A hypothesized radical reaction mechanism proposes that the collision between radicals in ammonia and on the PET surface caused by the incident laser provokes the grafting of amino groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. P. Vadgama, Surface biocompatibility. Annu. Rep. Prog. Chem. Sect. C 101, 14–52 (2005). doi:10.1039/b408906p

    Article  CAS  Google Scholar 

  2. A. Stevens, L. Gaard-Andersen, Making waves: pattern formation by a cell-surface-associated signal. Trends Microbiol. 13, 249–252 (2005). doi:10.1016/j.tim.2005.04.002

    Article  PubMed  CAS  Google Scholar 

  3. D.R. Jung, R. Kapur, T. Adams, K.A. Giuliano, M. Mrksich, H.G. Craighead, D.L. Taylor, Topographical and physicochemical modification of material surface to enable patterning of living cells. Crit. Rev. Biotechnol. 21, 111–154 (2001). doi:10.1080/20013891081700

    Article  PubMed  CAS  Google Scholar 

  4. Y.X. Wang, J.L. Robertson, J. Spillman, R.O. Claus, Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility. Pharm. Res. 21, 1362–1373 (2004). doi:10.1023/B:PHAM.0000036909.41843.18

    Article  PubMed  CAS  Google Scholar 

  5. I. Taniguchi, W.A. Kuhlman, A.M. Mayes, L.G. Griffith, Functional modification of biodegradable polyesters through a chemoselective approach: application to biomaterial surfaces. Polym. Int. 55, 1385–1397 (2006). doi:10.1002/pi.2139

    Article  CAS  Google Scholar 

  6. J. Tang, Q. He, H. Chen, N. He, Synthesis and hybridization studies of DNA on functionalized polypropylene surfaces. J. Nanosci. Nanotechnol. 5, 1225–1229 (2005). doi:10.1166/jnn.2005.222

    Article  PubMed  CAS  Google Scholar 

  7. N. Inagaki, K. Narushima, K. Kuwabara, K. Tamura, Introduction of amino functionalities on ethylene-co-tetrafluoroethylene film surfaces by NH3 plasmas. J. Adhes. Sci. Technol. 19, 1189–1205 (2005). doi:10.1163/156856105774429064

    Article  CAS  Google Scholar 

  8. A. Musyanovych, H.J.P. Adler, Grafting of amino functional monomer onto initiator-modified polystyrene particles. Langmuir 21, 2209–2217 (2005). doi:10.1021/la047960+

    Article  PubMed  CAS  Google Scholar 

  9. L.P. Zhu, B.K. Zhu, L. Xu, Y.X. Feng, F. Liu, Y.Y. Xu, Corona-induced graft polymerization for surface modification of porous polyethersulfone membranes. Appl. Surf. Sci. 253, 6052–6059 (2007). doi:10.1016/j.apsusc.2007.01.004

    Article  ADS  CAS  Google Scholar 

  10. S.J. Park, J.S. Jin, Effect of corona discharge treatment on the dyeability of low-density polyethylene film. J. Colloid Interface Sci. 236, 155–160 (2001). doi:10.1006/jcis.2000.7380

    Article  PubMed  CAS  Google Scholar 

  11. N. Dumitrascu, T. Balau, M. Tasca, G. Popa, Corona discharge treatment of the plastified PVC films obtained by chemical grafting. Mater. Chem. Phys. 65, 339–344 (2000). doi:10.1016/S0254-0584(00)00261-3

    Article  CAS  Google Scholar 

  12. J. Kim, J. Park, S. Lee, D. Sohn, Surface-grafting of polyglutamate on Si wafer using micro contact printing. Mol. Cryst. Liq. Cryst. 464, 211–216 (2007). doi:10.1080/15421400601031017

    Article  CAS  Google Scholar 

  13. W.M. Lackowski, P. Ghosh, R.M. Crooks. Micron-scale patterning of hyperbranched polymer films by micro-contact printing. J. Am. Chem. Soc. 121, 1419–1420 (1999). doi:10.1021/ja983545q

    Google Scholar 

  14. M.L. Carbajal, E.E. Smolko, M. Grasselli, Oriented immobilization of proteins on grafted porous polymers. Nucl. Instrum. Methods Phys .Res. B 208, 416–423 (2003). doi:10.1016/S0168-583X(03)00988-1

    Article  ADS  CAS  Google Scholar 

  15. V. Švorčík, K. Prošková, V. Hnatowicz, V. Rybka, Alanine grafting of ion-beam-modified polyethylene. J. Appl. Polym. Sci. 75, 1144–1148 (2000). doi:10.1002/(SICI)1097-4628(20000228)75:9<1144::AID-APP7>3.0.CO;2-3

    Article  Google Scholar 

  16. K. Rajangam, H.A. Behanna, M.J. Hui, X. Han, J.F. Hulvat, J.W. Lomasney, S.I. Stupp, Heparin binding nanostructures to promote growth of blood vessels. Nano. Lett. 6, 2086–2090 (2006). doi:10.1021/nl0613555

    Article  PubMed  CAS  ADS  Google Scholar 

  17. A.K. Chakraborty, A.J. Golumbfskie, Polymer adsorption-driven self-assembly of nanostructures. Annu. Rev. Phys. Chem. 52, 537–573 (2001). doi:10.1146/annurev.physchem.52.1.537

    Article  PubMed  CAS  Google Scholar 

  18. Q. Zhao, C. Wan, J. Liu, K. Qiu, Research in synthesis of bioactive peptide RGD and the method for its grafting on PET surface. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. J. Biomed. Eng. 20, 384–387 (2003)

    Google Scholar 

  19. Z. Zhu, M.J. Kelley, Poly(ethylene terephthalate) surface modification by deep UV (172 nm) irradiation. Appl. Surf. Sci. 236, 416–425 (2004). doi:10.1016/j.apsusc.2004.05.012

    Article  ADS  CAS  Google Scholar 

  20. C. Chollet, S. Lazare, C. Re, F. Guillemot, R. Bareille, M.C. Durrieu, RGD peptides micro-patterning on?poly(ethylene terephthalate) surfaces. ITBM-RBM 28, 2–12 (2007)

    Google Scholar 

  21. T. Sugawara, T. Matsuda, Novel surface graft copolymerization method with micron-order regional precision. Macromolecules 27, 7809–7814 (1994). doi:10.1021/ma00104a040

    Article  CAS  ADS  Google Scholar 

  22. A. Wirsén, H. Sun, A.C. Albertsson, Solvent-free vapor-phase photografting of acrylamide onto poly(ethylene terephthalate). Biomacromolecules 6, 2697–2702 (2005). doi:10.1021/bm050169a

    Google Scholar 

  23. Z.P. Yao, B. Ranby, Surface modification by continuous graft copolymerization. III. Photoinitiated graft copolymerization onto poly(ethylene terephthalate) fiber surface. J. Appl. Polym. Sci. 41, 1459–1467 (1990). doi:10.1002/app.1990.070410709

    Article  CAS  Google Scholar 

  24. K.S. Chen, Y.A. Ku, H.R. Lin, T.R. Yan, D.C. Sheu, T.M. Chen, Surface grafting polymerization of JV-Vinyl-2-pyrrolidone onto a poly(ethylene terephthalate) nonwoven by plasma pretreatment and its antibacterial activities. J. Appl. Polym. Sci. 100, 803–809 (2006). doi:10.1002/app.23111

    Article  CAS  Google Scholar 

  25. C. Wu, J. Zhao, B. Zhang, M. Yuan, Surface graft polymerization of PET and PE fibers by UV irradiation. J. Dong Hua Univ. 15, 38–41 (1998). English Edition

    CAS  Google Scholar 

  26. Y.W. Song, H.S. Do, H.S. Joo, D.H. Lim, S. Kim, H.J. Kim, Effect of grafting of acrylic acid onto PET film surfaces by UV irradiation on the adhesion of PSAs. J. Adhes. Sci. Technol. 20, 1357–1365 (2006). doi:10.1163/156856106778456564

    Article  CAS  Google Scholar 

  27. J. Wang, P. Li, H. Sun, P. Yang, Y.X. Leng, J.Y. Chen, N. Huang, Blood compatibility of chitosan immobilized on poly(ethylene terephthalate) surface modified by plasma and ultraviolet grafting. Key Eng. Mater. 288–289, 327–330 (2005)

    Article  Google Scholar 

  28. E. Uchida, Y. Uyama, Y. Ikada, Grafting of water-soluble chains onto a polymer surface. Langmuir 10, 481–485 (1994). doi:10.1021/la00014a023

    Article  CAS  Google Scholar 

  29. H. Watanabe, M. Yamamoto, Chemical structure change of a KrF-laser irradiated PET fiber surface. J. Appl. Polym. Sci. 71, 2027–2031 (1999). doi:10.1002/(SICI)1097-4628(19990321)71:12<2027::AID-APP12>3.0.CO;2-K

    Article  CAS  Google Scholar 

  30. J.S. Rossier, P. Bercier, A. Schwarz, S. Loridant, H.H. Girault, Topography, crystallinity and wettability of photoablated PET surfaces. Langmuir 15, 5173–5178 (1999). doi:10.1021/la9809877

    Article  CAS  Google Scholar 

  31. T. Lippert, T. Nakamura, H. Niino, A. Yabe, Laser induced chemical and physical modifications of polymer films: dependence on the irradiation wavelength. Appl. Surf. Sci. 109–110, 227–231 (1997). doi:10.1016/S0169-4332(96)00663-0

    Article  Google Scholar 

  32. D. Knittel, E. Schollmeyer, Surface structuring of synthetic fibres by UV laser irradiation. Part III. Surface functionality changes resulting from excimer-laser irradiation. Polym. Int. 45, 103–109 (1998). doi:10.1002/(SICI)1097-0126(199801)45:1<103::AID-PI917>3.0.CO;2-2

    Article  CAS  Google Scholar 

  33. M.T. Khorasani, H. Mirzadeh, P.G. Sammes, Laser surface modification of polymers to improve biocompatibility: HEMA grafted PDMS, in vitro assay - III. Radiat. Phys. Chem. 55, 685–689 (1999). doi:10.1016/S0969-806X(99)00212-1

    Article  ADS  CAS  Google Scholar 

  34. H. Mirzadeh, A.R. Ekbatani, A.A. Katbab, Surface modification of ethylene-propylene rubber by laser grafting of acrylic acid. Iranian Polym. J. 5, 225–230 (1996). English Edition

    CAS  Google Scholar 

  35. W. Kesting, D. Knittel, E. Schollmeyer, Surface modification of polymer fibres by UV laser irradiation. X. UV-laser-induced graft copolymerization of acrylic acid onto polypropylene. Angewandte Makromolekulare Chemie. 182, 177–186 (1990). doi:10.1002/apmc.1990.051820112

  36. H. Mirzadeh, M. Dadsetan, N. Sharifi-Sanjani, Platelet adhesion on laser-induced acrylic acid-grafted polyethylene terephthalate. J. Appl. Polym. Sci. 86, 3191–3196 (2002). doi:10.1002/app.10775

    Article  CAS  Google Scholar 

  37. M. Dadsetan, H. Mirzadeh, N. Sharifi-Sanjani, Surface modification of polyethylene terephthalate film by CO2 laser-induced graft copolymerization of acrylamide. J. Appl. Polym. Sci. 76, 401–407 (2000). doi:10.1002/(SICI)1097-4628(20000418)76:3<401::AID-APP15>3.0.CO;2-S

    Article  CAS  Google Scholar 

  38. H. Mirzadeh, A.A. Katbab, R.P. Burford, CO2-pulsed laser induced surface grafting of acrylamide onto ethylene-propylene rubber (EPR). II. Radiat. Phys. Chem. 42, 53–56 (1993). doi:10.1016/0969-806X(93)90201-5

    Article  ADS  CAS  Google Scholar 

  39. I.P. Herman, Laser-assisted deposition of thin films from gas-phase and surface-adsorbed molecules. Chem. Rev. 89, 1323–1357 (1989). doi:10.1021/cr00096a005

    Article  CAS  Google Scholar 

  40. Y.T. Chen, K. Naessens, R. Baets, Y.S. Liao, A.A. Tseng, Ablation of transparent materials using excimer lasers for photonic applications. Opt. Rev. 12, 427–441 (2005). doi:10.1007/s10043-005-0427-x

    Article  CAS  Google Scholar 

  41. H. Watanabe, M. Yamamoto, Laser ablation of poly(ethylene terephthalate). J. Appl. Polym. Sci. 64, 1203–1209 (1997). doi:10.1002/(SICI)1097-4628(19970509)64:6<1203::AID-APP21>3.0.CO;2-V

    Article  CAS  Google Scholar 

  42. J. Kim, D. Jung, Y. Park, Y. Kim, D.W. Moon, T.G. Lee, Quantitative analysis of surface amine groups on plasma-polymerized ethylenediamine films using UV-visible spectroscopy compared to chemical derivatization with FT-IR spectroscopy, XPS and TOF-SIMS. Appl. Surf. Sci. 253, 4112–4118 (2007). doi:10.1016/j.apsusc.2006.09.011

    Article  ADS  CAS  Google Scholar 

  43. I.M. El Nahhal, M.M. Chehimi, C. Cordier, G. Dodin, XPS, NMR and FTIR structural characterization of polysiloxane-immobilized amine ligand systems. J. Non-Cryst. Solids 275, 142–146 (2000). doi:10.1016/S0022-3093(00)00243-X

    Article  ADS  CAS  Google Scholar 

  44. K.S. Siow, L. Britcher, S. Kumar, H.J. Griesser, Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization - A review. Plasma Process. Polym. 3, 392–418 (2006). doi:10.1002/ppap.200600021

    Article  CAS  Google Scholar 

  45. P. Laurens, S. Petit, F. Refi-Khonsari, Study of PET surfaces after laser or plasma treatment: surface modifications and adhesion properties towards Al deposition. Plasmas Polym. 8, 281–295 (2003). doi:10.1023/A:1026337227361

    Article  CAS  Google Scholar 

  46. M.K. Shi, G. Dunham, M.E. Gross, G.L. Graff, P.M. Martin, Plasma treatment of PET and acrylic coating surfaces - I. In-situ XPS measurements. J. Adhes. Sci. Technol. 14, 1485–1498 (2000). doi:10.1163/156856100742320

    Article  CAS  Google Scholar 

  47. W. Li, E. Ding, Characterization of PET fabrics surface modified by graft cellulose nano-crystal using TGA, FE-SEM and XPS. Surf. Rev. Lett. 13, 819–823 (2006). doi:10.1142/S0218625X06008906

    Article  CAS  Google Scholar 

  48. N.W. Hayes, G. Beamson, D.T. Clark, D.S.L. Law, R. Raval, Crystallisation of PET from the amorphous state: observation of different rates for surface and bulk using XPS and FTIR. Surf. Interface Anal. 24, 723–728 (1996). doi:10.1002/(SICI)1096-9918(19960930)24:10<723::AID-SIA186>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  49. L.N. Bui, M. Thompson, N.B. McKeown, A.D. Romaschin, P.G. Kalman, Surface modification of the biomedical polymer poly(ethylene terephthalate). Analyst (Lond) 118, 463–474 (1993). doi:10.1039/an9931800463

    Article  ADS  CAS  Google Scholar 

  50. C. Jie-Rong, W. Xue-Yan, W. Tomiji, Wettability of poly(ethylene terephthalate) film treated with low-temperature plasma and their surface analysis by ESCA. J. Appl. Polym. Sci. 72, 1327–1333 (1999). doi:10.1002/(SICI)1097-4628(19990606)72:10<1327::AID-APP13>3.0.CO;2-0

    Article  CAS  Google Scholar 

  51. F.R. Lang, Y. Pitton, H.J. Mathieu, D. Landolt, E.M. Moser, Surface analysis of polyethyleneterephthalate by ESCA and TOF-SIMS. Fresenius. J. Anal. Chem. 358, 251–254 (1997). doi:10.1007/s002160050398

    Article  CAS  Google Scholar 

  52. M. Farber, F. Huisken, Intracluster reactions: the formation of hydrazine complexes from ammonia clusters following ArF excimer laser excitation. J. Chem. Phys. 104, 4865–4868 (1996). doi:10.1063/1.471155

    Article  ADS  Google Scholar 

  53. Y.G. Yingling, B.J. Garrison, Coarse-grained model of the interaction of light with polymeric material: onset of ablation. J. Phys. Chem. B 109, 16482–16489 (2005). doi:10.1021/jp0527711

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was financial supported by the EU project: PROTEUS, INTERREG III A—SP1.P151/03, Spain project: BIOAVAN, PSE 300100-206 and NSFC project: 50403023. We appreciate Dr. Carmen Serra from CACTI of University of Vigo for Tof-SIMS and XPS, Yan Leping from South China University of Technology for FT-IR/ATR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Paz, M.D., Chiussi, S. et al. Excimer laser chemical ammonia patterning on PET film. J Mater Sci: Mater Med 20, 597–606 (2009). https://doi.org/10.1007/s10856-008-3600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3600-5

Keywords

Navigation