Skip to main content
Log in

Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Regeneration of fractured or diseased bones is the challenge faced by current technologies in tissue engineering. The major solid components of human bone consist of collagen and hydroxyapatite. Collagen (Col) and hydroxyapatite (HA) have potential in mimicking natural extracellular matrix and replacing diseased skeletal bones. More attention has been focused on HA because of its crystallographic structure similar to inorganic compound found in natural bone and extensively investigated due to its excellent biocompatibility, bioactivity and osteoconductivity properties. In the present study, electrospun nanofibrous scaffolds are fabricated with collagen (80 mg/ml) and Col/HA (1:1). The diameter of the collagen nanofibers is around 265 ± 0.64 nm and Col/HA nanofibers are 293 ± 1.45 nm. The crystalline HA (29 ± 7.5 nm) loaded into the collagen nanofibers are embedded within nanofibrous matrix of the scaffolds. Osteoblasts cultured on both scaffolds and show insignificant level of proliferation but mineralization was significantly (p < 0.001) increased to 56% in Col/HA nanofibrous scaffolds compared to collagen. Energy dispersive X-ray analysis (EDX) spectroscopy results proved the presence of higher level of calcium and phosphorous in Col/HA nanocomposites than collagen nanofibrous scaffolds grown osteoblasts. The results of the present study suggested that the designed electrospun nanofibrous scaffold (Col/HA) have potential biomaterial for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. LI and J. CHANG, J. Mater. Sci. Mater. Med. 16 (2005) 365

    CAS  Google Scholar 

  2. Y. ZHANG and M. Q. ZHANG, J. Biomed. Mater. Res. 61 (2002) 1

    Article  CAS  Google Scholar 

  3. S. H. HSU, H. J. YEN, C. S. TSENG, C. S. CHENG and C. L. TSAI, J. Biomed. Mater. Res. 80 (2007) 519

    Article  CAS  Google Scholar 

  4. L. E. FREED, J. C. MARQUIS, A. NOHRIA, J. EMMANUAL and A. G. MIKOS, J. Biomed. Mater. Res. 27 (1993) 11

    Article  CAS  Google Scholar 

  5. D. A. GRAND, C. HALBERSTADT, G. NAUGHTON, R. SCHWARTZ and R. MANJI, J. Biomed. Mater. Res. 34 (1997) 211

    Article  Google Scholar 

  6. G. A. AMEER, T. A. MAHMOOD and R. A. LANGER, J. Orthop. Res. 20 (2002) 16

    Article  CAS  Google Scholar 

  7. http://en.wikipedia.org/wiki/Tissue_engineering

  8. J. R. JONES, O. TSIGKOU, E. E. COATES, M. M. STEVENS, J. M. POLAK and L. L. HENCH, Biomaterials 28 (2007) 1653

    Article  CAS  Google Scholar 

  9. S. C. MENDES, J. M. TIBBE, M. VEENHOF, S. BOTH and J. D. De BRUIJN, J. Mater. Sci. Mater. Med. 15 (2004) 1123

    Article  CAS  Google Scholar 

  10. S. C. MENDOS, J. D. DE BRUIJN, A. A. APELDOORN, P. P. PLATENBURG, G. J. M. TIBBE and C. A. VAN BLITTERWIJK in “Bone Engineering”, edited by J. E. Davies (Em Square Incorporated, Toronto, 2000) p. 505

  11. J. D. DE BRUIJN and C. A. VAN BLITTERSWIJK in “Biomaterials in Surgery” edited by G. H. J. M. Walenkamp (Stuttgart, 1998) p. 77

  12. M. WEINREB, D. SHINAR and G. RODAN, ibid. 5 (1990) 831

    CAS  Google Scholar 

  13. P. DERKX, A. L. NIGG, F. T. BOSMAN, A. P. POLS and T. M. VAN LEEUWEN, ibid. 22 (1998) 367

    CAS  Google Scholar 

  14. R. A. ROBINSON, J. Bone Joint Surg. Am. 34A (1952) 389

    CAS  Google Scholar 

  15. E. JOHANSEN and H. F. PARKS, J. Biophys. Biochem. Cytol. 7 (1960) 743

    Article  CAS  Google Scholar 

  16. E. SACHLOS, D. GOTORA and J. T. CZERNUSZKA, Tissue Eng. 12 (2006) 2479

    Article  CAS  Google Scholar 

  17. S. WEINER and W. TRAUB, Tissue Res. 21 (1989) 589

    Google Scholar 

  18. W. J. LANDIS, M. J. SONG, A. LEITH, L. McEWEN and B. F. McEWEN, J. Struct. Biol. 110 (1993) 39

    Article  CAS  Google Scholar 

  19. K. I. CLARKE, S. E. GRAVES, A. T. C. WONG, J. T. TRIFFIT, M. J. O. FRANCIS and J. T. CZERNUSZKA, J. Mater. Sci. Mater. Med. 4 (1993) 107

    Article  CAS  Google Scholar 

  20. F. J. O’BRIEN, B. A. HARLEY, I. V. YANNAS and L. GIBSON, Biomaterials 25 (2004) 1077

    Article  CAS  Google Scholar 

  21. M. KIKUCHI, H. N. MATSUMOTO, T. YAMADA and J. TANAKA, Biomaterials 25 (2004) 63

    Article  CAS  Google Scholar 

  22. G. A. CARLSON, J. L. DRAGOO, B. SAMIMI, D. A. BRUCKNER and P. BENHAIM, Biochem. Biophys. Res. Commun. 321 (2004) 472

    Article  CAS  Google Scholar 

  23. J. XIE, M. J. BAUMANN and L. R. McCABE, J. Biomed. Mater. Res. 71A (2004) 108

    Article  CAS  Google Scholar 

  24. C. M. SERRE, M. M. PAPILLARD, P. CHAVASSIEUX and G. BOIVIN, Biomaterials 14 (1993) 97

    Article  CAS  Google Scholar 

  25. M. L. WANG, R. TULI, P. A. MANNER, D. J. HALL and R. S. TUAN, J. Mater. Sci. Lett. 14 (1995) 490

    Article  CAS  Google Scholar 

  26. J. LI, Y. CHEN, Y. YIN, F. YAO and K. YAO, Biomaterials 28 (2007) 781

    Article  CAS  Google Scholar 

  27. R. MURUGAN and S. RAMAKRISHNA, Biochem. Biophys. Res. 292 (2002) 1

    Article  CAS  Google Scholar 

  28. A. SCABBIA and L. TROMBELLI, J. Clin. Periodontol. 31 (2004) 348

    Article  CAS  Google Scholar 

  29. D. WAHL and T. J. CZERNUSZKA, Euro. Cells Mater. 11 (2006) 43

    CAS  Google Scholar 

  30. G. GRONOWICZ and M. B. McCARTHY, J. Orthop. Res. 14 (1996) 878

    Article  CAS  Google Scholar 

  31. K. M. WOO, V. J. CHEN and P. X. MA, J. Biomed. Mater. Res. 67A, 531 (2003)

    Article  CAS  Google Scholar 

  32. L. GRIFFITH, Acta Mater. 48 (2000) 263

    Article  CAS  Google Scholar 

  33. R. LANGER and D. A. TRILL, Nature 428 (2004) 487

    Article  CAS  Google Scholar 

  34. C. A. GREGORY, W. G. GUNN, A. PEISTER and D. J. PROCKOP, Anal. Biochem. 329 (2004) 77

    Article  CAS  Google Scholar 

  35. J. GEORGE, Y. KUBOKI and T. MIYATA, Biotechnol. Bioeng. 95, 405 (2006)

    Article  CAS  Google Scholar 

  36. M. MIZUNO, R. FUJISAWA and Y. KUBOKI, J. Cell Physiol. 184 (2000) 207

    Article  CAS  Google Scholar 

  37. M. MIZUNO and Y. KUBOKI, J. Biochem (Tokyo). 129 (2001) 129

    Google Scholar 

  38. J. GLOWACHI, D. ALTOBELLI and A. J. MULLIIKEN, Calcif. Tiss. Int. 33 (1981) 71

    Article  Google Scholar 

  39. A. PORTER, N. PATEL, R. BROOKS and W. BONFIELD, J. Mater. Sci. Mater. Med. 16 (2005) 899

    Article  CAS  Google Scholar 

  40. S. ITOH, M. KIKUCHI and K. TAKAKUDA, J. Biomed. Mater. Res. 63 (2002) 507

    Article  CAS  Google Scholar 

  41. T. NISHIKAWA, K. MASUNO, K. TOMINAGA and A. TANAKA, Implant. Dent. 14 (2005) 252

    Article  Google Scholar 

  42. A. L. BOSKEY, Conn. Tissue Res. 35 (1996) 35

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Office of Life Sciences in National University of Singapore and StemLife Sdn Bhd, 50450 Kulalumpur, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Venugopal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venugopal, J., Low, S., Choon, A.T. et al. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci: Mater Med 19, 2039–2046 (2008). https://doi.org/10.1007/s10856-007-3289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3289-x

Keywords

Navigation