Skip to main content

Advertisement

Log in

Zinc phosphate as versatile material for potential biomedical applications Part 1

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Synthetic α - and β -Hopeite, two polymorphs of zinc phosphate tetrahydrates (ZPT) have been synthesized by hydrothermal crystallization from aqueous solution at 20 C and 90 C respectively. Aside from their subtitle crystallographic differences originating from a unique hydrogen bonding pattern, their thermodynamic interrelation has been thoroughfully investigated by means of X-Ray diffraction (XRD) and differential scanning calorimetry (DSC), combined with thermogravimetry (TGA-MS). Using a new heterogeneous step-reaction approach, the kinetics of dehydration of the two forms of ZPT was studied and their corresponding transition temperature determined. Low temperature DRIFT, FT-Raman and 1H, 31P MAS-NMR reveal an oriented distortion of the zinc phosphate tetrahedra, due to a characteristic hydrogen bonding pattern and in accordance with the molecular tetrahedral linkage scheme of the phosphate groups. Biogenic Hydroxyapatite (HAP) and one of its metastable precursors, a calcium dihydrogen phosphate dihydrate (DCPD) or Brushite were also obtained and used to underline the resulting variations of chemical reactivity in zinc phosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. BILLS and E. J. WHEELER, J. Ed. Mod. Mater. Sci. Eng. 4 (1982) 391.

    Google Scholar 

  2. A. SCHUROVSKY, Y. YACKIEVYCH and A. SHYYKA, Bone 32(5) (2003) S105.

    Google Scholar 

  3. L. L. HENCH and J. WILSON, in “Advances Series in Ceramics”, (World Scientific Publishers, Singapore, 1993) Vol. 1.

  4. L. J. SHYU, L. PEREZ, S. ZAWACKI, J. C. HEUGHEBAERT and G. H. NANCOLLAS, J. Dent. Res. 62 (1983) 398.

    CAS  Google Scholar 

  5. W. E. BROWN and L. C. CHOW, in Cement Research Progress, edited by P. W. Brown, (Am. Ceramics. Soc., Westerville, OH, 1987), p. 351.

    Google Scholar 

  6. B. R. CONSTANZ, I. C. ISON, M. T. FULMER, R. D. POSER, S. T. SMITH, M. VANWAGONER, J. ROSS, S. A. GOLDSTEIN, B. J. JUPITER and D. I. ROSENTHAL, Science 267 (1995) 1796.

    Google Scholar 

  7. L. L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487.

    Article  CAS  Google Scholar 

  8. E. F. MORGAN, D. N. YETKINLER, B. R. CONSTANZ and R. H. RAUSKARDT, J. Mater. Sci.: Mater. Med. 8(9) (1997) 559.

    Article  CAS  Google Scholar 

  9. G. GOLLER and F. N. OKTAR, Mater. Lett. 56(3) (2002) 142.

    CAS  Google Scholar 

  10. A. GERLACH, B. VINCENT, M. LISSAC, X. ESNOUF and G. THOLLET, Biomater. 14 (1993) 770 and references therein.

  11. F. BOHLSEN and M. KERN, Quintessence Int. 34(7) (2003) 493.

    Google Scholar 

  12. N. HIRAISHI, Y. KITASAKO, T. NIKAIDOL, R. M. FOXTON, J. TAGAMI and S. NOMURA, Int. Endod. J. 36(9) (2003) 622.

    Article  CAS  Google Scholar 

  13. B. CZARNECKA, H. LIMANOWSKA-SHAW and J. W. NICHOLSON, J. Mater. Sci.: Mater. Med. 14(7) (2003) 601.

    Article  CAS  Google Scholar 

  14. J. W. NICHOLSON, B. CZARNECKA and H. LIMANOWSKA-SHAW, ibid. 10(8) (1999) 449.

    Article  CAS  Google Scholar 

  15. A. D. WILSON, B. E. KENT and B. G. LEWIS, J. Dent. Res. 49 (1970) 1049.

    CAS  Google Scholar 

  16. S. CRISP, I. K. O'NEILL, H. J. PROSSER, B. STUART and A. D. WILSON, ibid. 57 (1978) 254.

    Google Scholar 

  17. J. MARGERIT, B. CLUZET, J. M. LEHOUP, J. NURIT, B. PAUVERT and A. TEROL, J. Mater. Sci. Mater. Med. 9 (1999) 449.

    Google Scholar 

  18. J. O. NRIAGU, Geochim. & Cosmochim. Acta 37 (1973) 2357.

    CAS  Google Scholar 

  19. M. UO, G. SJOREN, A. SUNDH, et al., Dent. Mater. 19(6) (2003) 487.

    CAS  Google Scholar 

  20. N. ATTAR, L. E. TAM and D. MCCOMB, J. Prothet. Dent. 89(2) (2003) 127.

    Article  CAS  Google Scholar 

  21. N. J. A. GREY and J. F. MCCORD, J. Dent. Res. 80(4) (2001) 1152.

    Google Scholar 

  22. R. J. HILL and J. B. JONES, Am. Mineralogist 61(9-10) (1975) 987.

    Google Scholar 

  23. G. Y. CHAO, Z. Kristallogr. 130 (1969) 261.

    Article  CAS  Google Scholar 

  24. M. V. GOLOSHCHAPOV and T. N. FILATOVA , Russ. J. Inorg. Chem. 14(3) (1969) 424.

    Google Scholar 

  25. E. A. NIKONENKO and I. N. MARENKOVA, ibid. 31 (1986) 397.

    Google Scholar 

  26. H. M. A. AL-MAYDAMA and P. J. GARDNER, Electrochem. Acta 194 (1992) 117.

    CAS  Google Scholar 

  27. H. M. A. AL-MAYDAMA, P. J. GARDNER and I. W. MC ARA, ibid. 196 (1992) 117.

    CAS  Google Scholar 

  28. L. HERSCHKE, V. ENKELMANN, I. LIEBERWIRTH and G. WEGNER, Chem. Eur. J. 10(11) (2004) 2795.

    Article  CAS  Google Scholar 

  29. N. SATO, K. WATANABE and T. MINAMI, J. Mater. Sci 26(4) (1991) 865.

    Article  CAS  Google Scholar 

  30. S. HAUSSUHL and M. FRIEDRICH, Cryst. Res. Technol. 28(4) (1993) 437.

    Google Scholar 

  31. P. LUO, in “Methods for Synthesizing HA Powders and Bulk Materials”, US Patent: 5858318 (1996).

  32. C. C. BERNDT, G. N. HADDAD, A. J. D. FARMER and K. A. GROSS, Mater. Forum 14(3) (1990) 161.

    CAS  Google Scholar 

  33. M. AKAO, H. AOKI and K. KATO, J. Mater. Sci. 6 (1981) 809.

    Google Scholar 

  34. M. V. CABANAS and M. VALLET-REGI, J. Mater. Chem. 13(5) (2003) 1104.

    CAS  Google Scholar 

  35. J. L. ARIAS, M. B. MAYOR and J. POU, Appl. Surf. Sci 208 (2003) 57.

    Article  CAS  Google Scholar 

  36. O. PAWLING and R. TRETTIN, Mat. Res. Bull. 34(12-13) (1999) 1959.

    Google Scholar 

  37. S. V. DOROZHKIN and M. EPPLE, Angew. Chem. Int. Edit. 41(17) (2002) 3130.

    CAS  Google Scholar 

  38. E. LANDI, G. CELOTTI, G. LOGROSCINO and A. TEMPERI, J. Eur. Ceram. Soc. 23(15) (2003) 2931.

    Article  CAS  Google Scholar 

  39. R. A. YOUNG, in Proceedings of the 2nd International Congress on Phosphorous Compounds, (Inst. Mond. Phosp., Paris, 1980), p. 73.

  40. L. M. RODRIGUEZ-LORENZO, J. N. HART and K. A. GROSS, Biomater. 24(21) (2003) 3777.

    CAS  Google Scholar 

  41. E. I. DOROZHKINA and S. V. DOROZHKIN, Colloid & Surface A 210(1) (2002) 41.

    CAS  Google Scholar 

  42. W. E. BROWN, Nature 196 (1962) 1048.

    CAS  Google Scholar 

  43. B. HERMANN, Z. Morphol. Anthropol. 68 (1977) 129.

    Google Scholar 

  44. G. LUSVARDI, L. MENABUE and M. SALADINI, J. Mater. Sci.: Mater. Med. 13(1) (2002) 91.

    Article  CAS  Google Scholar 

  45. P. BODIER-HOULLÉ, J. Dent. Res. 76 (1997) 895–904.

    Google Scholar 

  46. A. D. WILSON, G. ABEL and B. G. LEWIS, Br. Dent. J. 137 (1974) 313.

    Article  CAS  Google Scholar 

  47. R. A. BARREA, C. A. PEREZ and A. Y. RAMOS, X-Ray Spectrom. 32(5) (2003) 387.

    Article  CAS  Google Scholar 

  48. S. V. DOROZHKIN, Prog. Cryst. Growth 44/1 (2002) 45.

    CAS  Google Scholar 

  49. J. LANG, Bull. Soc. Chem. Bret. 53 (1981) 95.

    CAS  Google Scholar 

  50. C. ROLLAND, R. GUIDOIN, R. LEDOUX, A. ZERGUINI and P. E. ROY, Can. Mineral. 29 (1991) 337.

    CAS  Google Scholar 

  51. J. TERRA, M. JIANG and D. E. ELLIS, Philos. Mag. A 82(11) (2002) 2357.

    Article  CAS  Google Scholar 

  52. S. KENNY, M. BUGGY and R. G. HILL, J. Mater. Sci.: Mater. Med. 12(10-12) (2001) 901.

    CAS  Google Scholar 

  53. R. Z. LEGEROS, C. B. BLEIWAS, M. RETINO, R. ROHANIZADEH and J. P. LEGEROS, Am. J. Dent. 12(2) (1999) 65.

    CAS  Google Scholar 

  54. M. KNUUTTILA, R. LAPPALEÁINEN and V. KONTTURI-NARHI, Scand. J. Dent. Res. 88 (1980) 513.

    CAS  Google Scholar 

  55. A. BIGI, E. FOREST, M. GANDOLFI, M. GAZZANO and N. ROOVERI, J. Inorg. Biochem. 66 (1997) 259.

    Article  CAS  Google Scholar 

  56. S. C. D'ANDREA and A. Y. FADEEV, Langmuir 19(19) (2003) 7904.

    Article  CAS  Google Scholar 

  57. R.R. ERNST, G. BODENHAUSEN and A. WOKAUN, “Principles of Nuclear Magnetic Resonance in One and Two Dimensions”, (Clarendon Press, Oxford, 1986).

    Google Scholar 

  58. O. G. GORENSTEIN, “Phosphorus-31 NMR – Principles and applications”, (Academic press, Orlando, 1984).

    Google Scholar 

  59. A. L. VOLKOV, V. N. YAGLOV and G. L. NOVIKOV, Russian J. Phys. Chem. A 48 (1974) 1697.

    Google Scholar 

  60. V. N. YAGLOV, Khim. Khim. Tekhnol. (Minsk) 13 (1978) 7.

  61. J. S. STEPHENS and C. CALVO, Can. J. Chem. 45 (1967) 2303.

    CAS  Google Scholar 

  62. Y. CUDENNEC, A. LECERF, A. RIOU and Y. GÉRAULT, C. R. Acad. Sci. 301 serie II (1985) 93.

  63. J. KOMRSKA and V. SATAVA, Silikaty 13(2) (1969) 135.

    CAS  Google Scholar 

  64. F. L. KATNACH and F. A. HUMMEL, J. Electrochem. Soc. 105 (1958) 125.

    Google Scholar 

  65. ICDS cards of α,β-Zn3(PO4)2 N 29–1390 and 30–1489.

  66. A. G. KOTLOVA, N. I. SHCHEEPOCHKINA and B. M. KOBSEV, Inorg. Mater. (USSR) 11 (1976) 1247.

  67. Y. ARNAUD, E. SAHAKIAN and M. ROMAND, Appl. Surf. Sci. 32 (1988) 281.

    CAS  Google Scholar 

  68. A. WHITAKER, J. Appl. Cryst. 6 (1973) 495.

    Article  CAS  Google Scholar 

  69. T. KANAZAWA, in Inorganic Phosphate Chemistry, edited by Kodansha Scientific, (Tokyo, 1985).

  70. Y. ARNAUD, E. SAHAKIAN, J. LENOIR and A. ROCHE, Appl. Surf. Sci. 32 (1988) 296.

    CAS  Google Scholar 

  71. H. HAIDARA, PhD. Thesis, University of Muhlhouse, (France), (1985).

  72. E. A. NIKONENKO, I. I. OLIKOV, I. N. MARENKOVA, L. N. MARGOLIN and L. A. REZNIKOVA, Russ. J. Inorg. Chem. 30 (1985) 25.

    CAS  Google Scholar 

  73. (a) V. S. JOSHI and M. J. JOSHI, Cryst. Res. Technol. 38(9) (2003) 817; (b) N. JINLONG, Z. ZHENXI and J. DAZONG, J. Mater. Syn. Proc. 9(5) (2002) 235; (c) J. T. DICKINSON, C. BANDIS and S. C. LANGFORD, Mat. Res. Soc. Symp. 617 (2000) J1.1.1

  74. (a) C. CAMERON and B. BEN-NISSAN, Int. Ceram. Monographs, 1(1) (1994) 79; (b) W. Kubota, Nippon Seikeigeka Gakkai Zasshi 66(1) (1992) 110.

  75. A. I. VOLKOV, V. N. YAGLOV and G. I. NOVIKOV, Russ. J. Phys. Chem. 48 (1974) 1697.

    Google Scholar 

  76. Idem., ibid. 48 (1974) 1701.

    Google Scholar 

  77. V. N. YAGLOV, Khim. Khim. Technol. (Minsk) 13 (1978) 7.

  78. V. N. YAGLOV, L. A. MARINOVA and G. I. NOVIKOV, Dokl. Akad. Nauk. B 78 (1974) 624.

    Google Scholar 

  79. D. D. WAGMAN, W. H. EVANS, V. B. PARKER, I. HALOW, S. M. BAILEY and R. H SCHUMM, Natl. Bur. Stand. Tech. Note 270(3) (1968) 264.

    Google Scholar 

  80. D. D. WAGMAN, W. H. EVANS, V. B. PARKER, I. HALOW, S. M. BAILEY and R. H SCHUMM, Natl. Bur. Stand. Tech. Note 270(4) (1969) 152.

  81. D. D. WAGMAN, W. H. EVANS, V. B. PARKER, I. HALOW, S. M. BAILEY, R. H SCHUMM and K. L. CHURNEY, Natl. Bur. Stand. Tech. Note 270(5) (1971) 49.

  82. I. R. GIBSON, I. REHMAN, S. M. BEST and W. BONFIELD, J. Mater. Sci.: Mater. Med. 12 (2000) 799.

    Google Scholar 

  83. M. TAMAI, M. NAKAMURA, T. ISSHIKI, H. ENDOH and A. NAKAHIRA, J. Mater. Sci. Mater. Med. 14 (2003) 617.

    Article  CAS  Google Scholar 

  84. J. JP. VALDES, J. O. LOPEZ, G. R. MORALES, G. P. MALAGON and V. P. GORTCHEVA, J. Mater. Sci.: Mater. Med. 5 (1997) 297.

    Google Scholar 

  85. V. B. PARKER, D. D. WAGMAN, W. H. EWANS, Natl. Bur. Stand. Tech. Note 270(6) (1971) 119.

    Google Scholar 

  86. J. D. COX, D. D. WAGMAN, V. A. MEDVEDEV, in CODATA Key Values for Thermodynamics, (Hemisphere Pub. Corp., London, 1989).

    Google Scholar 

  87. A. I. VOLKOV, Khim. Khim. Tekhnol. (Minsk) 14 (1979) 58.

  88. V. N. YAGLOV, ibid. (Minsk) 13 (1978) 7.

  89. J. O. NRIAGU and P. B. MOORE, in, “Phosphate Minerals”, (Springer Verlag, Berlin, 1984).

    Google Scholar 

  90. F. BAITALOW, G. WOLF and H. G. SCHMIDT, J. Thermal Anal. 52 (1998) 5.

    CAS  Google Scholar 

  91. C. H. P. LUPIS, in “Chemical Thermodynamics of Materials”, (Elsevier Publish., Oxford, 1983), p. 87.

    Google Scholar 

  92. R. S BERRY, S. A. RICE and J. ROSS, in “Physical Chemistry”, (J. Wiley and Sons, 1980), p. 1147.

  93. P. MOLERA, J. MONTOYA and M. DEL VALLE, Corr. Rev. 21(4) (2003) 349.

    CAS  Google Scholar 

  94. A. BEHENCOURT, F. J. BOTANA, M. MARCOS, et al., Prog. Org. Coat. 46(4) (2003) 280.

    Google Scholar 

  95. M. BEIRO, A. COLLAZO, M. IZQUIERDO, X. R. NÖVOA and C. PÉREZ, Prog. Org. Coat. 46(2) (2003) 97.

    Article  CAS  Google Scholar 

  96. U. B. NAIR and M. SUBBAIYAN, J. Mater. Sci. 30 (1995) 2108.

    Article  CAS  Google Scholar 

  97. T. SUGAMA and T. TAKAHASHI, ibid. 30 (1995) 809.

    Article  CAS  Google Scholar 

  98. O. PAWLIG, V. SCHELLENBERGER, H. D. LUTZ and R. TRETTIN, Spectrochim. Acta A 57 (2001) 581.

    CAS  Google Scholar 

  99. K. NAKAMOTO in “IR and Raman Spectra of Inorganic and Coordination Compounds”, (J. Wiley & Sons, New York, 1986).

    Google Scholar 

  100. N. SATO, K. WATANABE and T. MINAMI, J. Mater. Sci. 26 (1991) 1383.

    CAS  Google Scholar 

  101. H. D. LUTZ, Struct. Bonding 82 (1988) 97.

    Google Scholar 

  102. J. ARENDS, J. CHRISTOFFERSEN, M. R. CHRISTOFFERSEN, H. ECKERT, et al., J. Cryst. Growth 84 (1987) 512.

    Article  Google Scholar 

  103. J. J. STUTTMANN, J. D. TERMINE and A. S. POSNER, Trans. NY Acad. Sci. 27 (1965) 669.

    Google Scholar 

  104. B. O. FOWLER, Inorg. Chem. 13 (1974) 194.

    CAS  Google Scholar 

  105. O. PAWLIG and R. TRETTIN, Chem. Mater. 12 (2000) 1279.

    Article  CAS  Google Scholar 

  106. (a) B. O. FOWLER, E. C. MORENO and W. E. BROWN, Arch. Oral. Biol. 11 (1966) 477; (b) M. PRETTO, A. L. COSTA, E. LANDI, A. TAMPIERI, et al., J. Am. Ceram. Soc. 86(9) (2003) 1534.

  107. F. FREUND and R. M. KNOBEL, J. Chem. Soc. 6 (1977) 1136.

    Google Scholar 

  108. H. D. LUTZ, Struct. Bonding (Berlin) 82 (1995) 85.

  109. H. D. LUTZ and C. JUNG, J. Mol. Struct. 404 (1997) 63.

    Article  CAS  Google Scholar 

  110. W. MIKENDA, ibid. 147 (1986) 1.

    Article  CAS  Google Scholar 

  111. H. D. LUTZ, J. HIMMRICH and M. SCHMIDT, J. Alloys Compd. 241 (1996) 1.

    Article  CAS  Google Scholar 

  112. V. PERUSEVSKI and B. SOPTRAJANOV, J. Mol. Struct. 17 (1988) 349.

    Google Scholar 

  113. E. E. BERRY and C. B. BADDIEL, Spectrochim. Acta A 23 (1967) 537.

    Google Scholar 

  114. A. C. CHAPMAN, D. A. LONG and D. L. JONES, Spectrochim. Acta A 21 (1965) 633.

    CAS  Google Scholar 

  115. J. A. S. BETT, L. G. CHRISTNER and W. KEITH HALL, J. Am. Chem. Soc. 89 (1967) 5535.

    Article  CAS  Google Scholar 

  116. G. SOCRATES, in “Infrared Characteristic Group Frequencies”, (J. Wiley & Sons, Chichester, 1980).

    Google Scholar 

  117. A. Y. U. MALYSHEVA and B. I. BELETSKII, Glass and Ceram. 58(3) (2001) 147.

    CAS  Google Scholar 

  118. A. HINA, G. H. NANCOLLAS and M. GRYNPAS, J. Cryst. Growth 223 (2001) 213.

    Article  CAS  Google Scholar 

  119. H. D. LUTZ and H. HAEUSELER, Trends Appl. Spectrosc. 2 (1998) 59.

    CAS  Google Scholar 

  120. Idem., J. mol. Struct. 511(512) (1999) 69.

    Google Scholar 

  121. G. HERZBERG in Molecular Spectra and Molecular Structure II: Infra-Red & Raman Spectra of Polyatomic Molecules, edited by D. Van Nostrand, (Princeton, 1945).

  122. N. SATO, J. Mater. Sci. Lett. 10(2) (1991) 115.

    Article  CAS  Google Scholar 

  123. T. ISOBE, S. NAKAMURA, R. NEMOTO and M. SENNA, J. Phys. Chem. B 106 (2002) 5169.

    Article  CAS  Google Scholar 

  124. J. P. YESINOWSKI and H. ECKERT, J. Am. Chem. Soc. 109 (1987) 6274.

    Article  CAS  Google Scholar 

  125. A. BAUMER, M. GANTEAUME and W. E. KLEE, Bull. Mineral. 108 (1985) 145.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Lieberwirth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herschke, L., Rottstegge, J., Lieberwirth, I. et al. Zinc phosphate as versatile material for potential biomedical applications Part 1. J Mater Sci: Mater Med 17, 81–94 (2006). https://doi.org/10.1007/s10856-006-6332-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-6332-4

Keywords

Navigation