Skip to main content

Advertisement

Log in

A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the present work we originally tested the suitability of corn starch-polycaprolactone (SPCL) scaffolds for pursuing a cartilage tissue engineering approach. Bovine articular chondrocytes were seeded on SPCL scaffolds under dynamic conditions using spinner flasks (total of 4 scaffolds per spinner flask using cell suspensions of 0.5 × 106 cells/ml) and cultured under orbital agitation for a total of 6 weeks. Poly(glycolic acid) (PGA) non-woven scaffolds and bovine native articular cartilage were used as standard controls for the conducted experiments. PGA is a kind of standard in tissue engineering approaches and it was used as a control in that sense. The tissue engineered constructs were characterized at different time periods by scanning electron microscopy (SEM), hematoxylin-eosin (H&E) and toluidine blue stainings, immunolocalisation of collagen types I and II, and dimethylmethylene blue (DMB) assay for glycosaminoglycans (GAG) quantification assay. SEM results for SPCL constructs showed that the chondrocytes presented normal morphological features, with extensive cells presence at the surface of the support structures, and penetrating the scaffolds pores. These observations were further corroborated by H&E staining. Toluidine blue and immunohistochemistry exhibited extracellular matrix deposition throughout the 3D structure. Glycosaminoglycans, and collagen types I and II were detected. However, stronger staining for collagen type II was observed when compared to collagen type I. The PGA constructs presented similar features to SPCL at the end of the 6 weeks. PGA constructs exhibited higher amounts of matrix glycosaminoglycans when compared to the SPCL scaffolds. However, we also observed a lack of tissue in the central area of the PGA scaffolds. Reasons for these occurrences may include inefficient cells penetration, necrosis due to high cell densities, or necrosis related with acidic by-products degradation. Such situation was not detected in the SPCL scaffolds, indicating the much better biocompatibility of the starch based scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. SALGADO, J. T. OLIVEIRA, A. J. PEDRO and R. L. REIS, Current Stem Cell Research & Therapy 1 (2006) 231.

    Google Scholar 

  2. K. UEMATSU, K. HATTORI, Y. ISHIMOTO, J. YAMAUCHI, T. HABATA, Y. TAKAKURA, H. OHGUSHI, T. FUKUCHI and M. SATO, Biomaterials 26(20) (2005) 4273.

    Article  CAS  Google Scholar 

  3. R. CANCEDDA, B. DOZIN, P. GIANNONI and R. QUARTO, Matrix. Biol. 22(1) (2003) 81.

    Article  CAS  Google Scholar 

  4. G. CHEN, D. LIU, M. TADOKORO, R. HIROCHIKA, H. OHGUSHI, J. TANAKA and T. TATEISHI, Biochem. Biophys. Res. Commun. 322(1) (2004) 50.

    Article  CAS  Google Scholar 

  5. J. S. TEMENOFF and A. G. MIKOS, Biomaterials 21(5) (2000) 431.

    Article  CAS  Google Scholar 

  6. A. J. GRODZINSKY, Crit. Rev. Biomed. Eng. 9(2) (1983) 133.

    CAS  Google Scholar 

  7. W. ZHU, V. C. MOW, T. J. KOOB and D. R. EYRE, J. Orthop. Res. 11(6) (1993) 771.

    Article  CAS  Google Scholar 

  8. M. B. YAYLAOGLU, C. YILDIZ, F. KORKUSUZ and V. HASIRCI, Biomaterials 20(16) (1999) 1513.

    Article  CAS  Google Scholar 

  9. C. R. LEE, H. A. BREINAN, S. NEHRER and M. SPECTOR, Tissue Eng. 6(5) (2000) 555.

    Article  CAS  Google Scholar 

  10. Z. GUGALA and S. GOGOLEWSKI, J. Biomed. Mate. Res. 49(2) (2000) 183.

    Article  CAS  Google Scholar 

  11. P. GIANNONI, A. PAGANO, E. MAGGI, R. ARBICO, N. RANDAZZO, M. GRANDIZIO, R. CANCEDDA and B. DOZIN, Osteoarthritis and Cartilage 13(7) (2005) 589.

    Article  CAS  Google Scholar 

  12. Z. GUGALA and S. GOGOLEWSKI, J. Biomed. Mater. Res. 49(2) (2000) 183.

    Article  CAS  Google Scholar 

  13. D. W. HUTMACHER, Biomaterials 21(24) (2000) 2529.

    Article  CAS  Google Scholar 

  14. J.-A. HAN and S.-T. LIM, Carbohydrate Polymers 55(3) (2004) 265.

    Article  CAS  Google Scholar 

  15. T. FUNAMI, Y. KATAOKA, T. OMOTO, Y. GOTO, I. ASAI and K. NISHINARI, Food Hydrocolloids 19(1) (2005) 25.

    Article  CAS  Google Scholar 

  16. A. P. MARQUES, R. L. REIS and J. A. HUNT, Macromol. Biosci. 5(8) (2005) 775.

    Article  CAS  Google Scholar 

  17. M. E. GOMES, J. S. GODINHO, D. TCHALAMOV, A. M. CUNHA and R. L. REIS, Mater. Sci. Eng.: C 20(1/2) (2002) 19.

    Article  Google Scholar 

  18. A. J. SALGADO, O. P. COUTINHO and R. L. REIS, Tissue Eng. 10(3) (2004) 465.

    Article  CAS  Google Scholar 

  19. A. P. MARQUES and R. L. REIS, Mater. Sci. Eng. C-Biomimetic and Supramolecular Syst. 25(2) (2005) 215.

    Google Scholar 

  20. W. J. LI, K. G. DANIELSON, P. G. ALEXANDER and R. S. TUAN, J. Biomed. Mater. Res. - Part A 67(4) (2003) 1105.

    Article  CAS  Google Scholar 

  21. W.-J. LI, R. TULI, C. OKAFOR, A. DERFOUL, K. G. DANIELSON, D. J. HALL and R. S. TUAN, Biomaterials 26(6) (2005) 599.

    Article  CAS  Google Scholar 

  22. M. E. GOMES, V. I. SIKAVITSAS, E. BEHRAVESH, R. L. REIS and A. G. MIKOS, J. Biomed. Mater. Res. A. 67(1) (2003) 87.

    Article  CAS  Google Scholar 

  23. A. J. SALGADO, O. P. COUTINHO and R. L. REIS, Tissue Eng. 10(3) (2004) 465.

    Article  CAS  Google Scholar 

  24. A. CRAWFORD and S. C. DICKINSON, “Methods in Molecular Biology: Biopolymer Methods in Tissue Engineering” (Humana Press Inc., US, Totowa, NJ, 2004).

    Google Scholar 

  25. W. KAFIENAH and T.J. SIMS, “Methods in Molecular Biology: Biopolymer Methods in Tissue Engineering (Humana Press Inc., US, Totowa, NJ, 2004).

    Google Scholar 

  26. A. THAMBYAH, A. NATHER and J. GOH, Osteoarthritis and Cartilage In Press, Corrected Proof.

  27. M. E. GOMES, V. I. SIKAVITSAS, E. BEHRAVESH, R. L. REIS and A. G. MIKOS, J. Biomed. Mater. Res. Part A 67A(1) (2003) 87.

    Article  CAS  Google Scholar 

  28. J. J. A. BARRY, H. S. GIDDA, C. A. SCOTCHFORD and S. M. HOWDLE, Biomaterials 25(17) (2004) 3559.

    Article  CAS  Google Scholar 

  29. V. J. D. CIOLFI, R. PILLIAR, C. MCCULLOCH, S. X. WANG, M. D. GRYNPAS and R. A. KANDEL, Biomaterials 24(26) (2003) 4761.

    Article  CAS  Google Scholar 

  30. P. CUEVAS, J. BURGOS and A. BAIRD, Biochem. Biophy. Rese. Commun. 156(2) (1988) 611.

    Article  CAS  Google Scholar 

  31. F. P. LUYTEN, V. C. HASCALL, S. P. NISSLEY, T. I. MORALES and A. H. REDDI, Arch. Biochem. Biophys. 267(2) (1988) 416.

    Article  CAS  Google Scholar 

  32. A. W. T. SHUM and A. F. T. MAK, Polymer Degradation and Stability 81(1) (2003) 141.

    Article  CAS  Google Scholar 

  33. K. A. ATHANASIOU, C. M. AGRAWAL, F. A. BARBER and S. S. BURKHART, Arthroscopy: The Journal Arthroscopic & Related Surgery 14(7) (1998) 726.

    Article  CAS  Google Scholar 

  34. R. CANCEDDA, F. DESCALZI CANCEDDA and P. CASTAGNOLA, Int. Rev. Cytol. 159 (1995) 265.

    Article  CAS  Google Scholar 

  35. K. R. BRODKIN, A. J. GARCIA and M. E. LEVENSTON, Biomaterials 25(28) (2004) 5929.

    Article  CAS  Google Scholar 

  36. E. M. DARLING and K. A. ATHANASIOU, Ann. Biomed. Eng. 31(9) (2003) 1114.

    Article  Google Scholar 

  37. B. DOZIN, M. MALPELI, L. CAMARDELLA, R. CANCEDDA and A. PIETRANGELO, Matrix Biol. 21(5) (2002) 449.

    Article  CAS  Google Scholar 

  38. R. S. TARE, D. HOWARD, J. C. POUND, H. I. ROACH and R. O. C. OREFFO, Biochem. Biophys. Res. Commun. 333(2) (2005) 609.

    Article  CAS  Google Scholar 

  39. C. KAPS, S. FRAUENSCHUH, M. ENDRES, J. RINGE, A. HAISCH, J. LAUBER, J. BUER, V. KRENN, T. HAUPL, G.-R. BURMESTER and M. SITTINGER, Biomaterials 27(19) (2006) 3617.

    CAS  Google Scholar 

  40. S. LOTY, C. FOLL, N. FOREST and J.-M. SAUTIER, Archives of Oral Biology 45(10) (2000) 843.

    Article  CAS  Google Scholar 

  41. J. LI, K. S. KIM, J. S. PARK, W. A. ELMER, W. C. HUTTON and S. T. YOON, J. Orthopaedic Sci 8(6) (2003) 829.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, J.T., Crawford, A., Mundy, J.M. et al. A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. J Mater Sci: Mater Med 18, 295–302 (2007). https://doi.org/10.1007/s10856-006-0692-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0692-7

Keywords

Navigation