Skip to main content
Log in

Crystallinity in apatites: how can a truly disordered fraction be distinguished from nanosize crystalline domains?

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the last decade synthetic apatites mimicking the human natural one have been widely prepared and characterized from the physico-chemical point of view; however a shading zone is still remaining related to the evaluation and distinction of the less crystalline part, almost amorphous, and the crystallographically well ordered, nano-sized part, inside the apatite itself. Actually natural apatite forming bone tissue can include both types of crystals whose prevalence is dependent from the specific bone evolution stage and the specialized tissue performance. The quantitative description of such a combination usually represents a puzzling problem, but the result can also clarify the definition of “crystallinity in apatite” that appears still controversial. Many different synthetic apatites, including those nucleated on organic templates, were analyzed with different techniques (X-ray diffraction, transmission electron microscopy, and so on) to clarify the true nature of the disordered part. The results, manipulated by the classical methodologies devised for substances with highly perturbed structural order, led to establish that only specifically prepared amorphous calcium phosphate is really a glass, while the distorted portion coexisting with more or less crystalline regions is simply nanocrystalline. Moreover, at the conceptual limit of crystallinity tending to zero, the two models surprisingly cease to be conflicting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. LEGEROS, in “Calcium phosphates in oral biology and medicine,” Monographs in oral science, vol. 15, edited by K. H. Myers (AG Publishers, Basel, 1991).

  2. C. REY, in “Calcium phosphates for medical applications,” Calcium phosphates in biological and industrial systems, edited by Z. Amjad (Kluwer Acad. Publishers, Boston, 1998).

  3. W. SUCHANEK and M. YOSHIMURA, J. Mater. Res. 13 (1998) 94.

    CAS  Google Scholar 

  4. H. M. KIM, J. Ceram. Soc. Japan 109 (2001) S49.

    CAS  Google Scholar 

  5. T. S. B. NARASARAJU and D. E. PHEBE, J. Mater. Sci. 31 (1996) 1.

    Article  CAS  Google Scholar 

  6. S. RINNERTHALER, P. ROSCHGER, H. F. JAKOB, A. NADER, K. KLAUSHOFER and P. FRATZL, Calcif. Tissue Int. 64 (1999) 422.

    Article  CAS  Google Scholar 

  7. I. ŽIŽAK, O. PARIS, P. ROSCHGER, S. BERNSTORFF, H. AMENITSCH, K. KLAUSHOFER and P. FRATZL, J. Appl. Cryst. 33 (2000) 820.

    Article  Google Scholar 

  8. A. TAMPIERI, G. CELOTTI and E. LANDI, Anal. and Bioanal. Chem. 381 (2005) 568.

    Article  CAS  Google Scholar 

  9. E. LANDI, A. TAMPIERI, G. CELOTTI and S. SPRIO, J. Eur. Ceram. Soc. 20 (2000) 2377.

    Article  CAS  Google Scholar 

  10. A. TAMPIERI, G. CELOTTI, S. SPRIO, A. DELCOGLIANO and S. FRANZESE, Biomaterials 22 (2001) 1365.

    Article  CAS  Google Scholar 

  11. A. TAMPIERI, G. CELOTTI, E. LANDI, M. SANDRI, N. ROVERI and G. FALINI, J. Biomed. Mater. Res. 67A (2003) 618.

    Article  CAS  Google Scholar 

  12. E. LANDI, A. TAMPIERI, G. CELOTTI, L. VICHI and M. SANDRI, Biomaterials 25 (2004) 1763.

    Article  CAS  Google Scholar 

  13. A. TAMPIERI, G. CELOTTI, E. LANDI and M. SANDRI, Key Eng. Mater. 2051 (2004) 264–268

    Google Scholar 

  14. R. Z. LEGEROS, D. MIJARES, J. PARK, X. F. CHANG, I. KHAIROUN, R. KIJKOWSKA, R. DIAS and J. P. LEGEROS, Key Eng. Mater. 7 (2005) 284–286.

    Google Scholar 

  15. R. Z. LEGEROS, W. P. SHIRRA, M. A. MIRAVITE and J. P. LEGEROS, in CNRS n. 230 (Paris, 1973) 105.

  16. B. E. WARREN, in “X-ray diffraction” (Addison-Wesley, Reading, 1969).

  17. T. EGAMI and S. J. L. BILLINGE, in “Underneath the Bragg peaks: structural analysis of complex materials” (Pergamon, Amsterdam, 2003).

  18. J. W. RICHARDSON, JR., in “Background modelling in Rietveld analysis,” The Rietveld method, edited by R. A. Young (I. U. Cr.-Oxford University Press, Oxford, 1996) p. 102.

  19. L. KELLER and W. A. DOLLASE, J. Biomed. Mater. Res. 49 (2000) 244.

    Article  CAS  Google Scholar 

  20. A. S. POSNER and F. BETTS, Acc Chem Res. 8 (1975) 273.

    Article  CAS  Google Scholar 

  21. A. TAMPIERI, G. CELOTTI, F. SZONTAGH and E. LANDI, J. Mater. Sci.: Mater. Med 8 (1997) 29.

    Article  CAS  Google Scholar 

  22. M. TAMAI, M. NAKAMURA, T. ISSHIKI, K. NISHIO, H. ENDOH and A. NAKAHIRA, J. Mater. Sci.: Mater. Med. 14 (2003) 617.

    Article  CAS  Google Scholar 

  23. G. MOUNTJOY, J. Phys. Condens. Matter. 11 (1999) 2319 and references therein.

  24. A. FONTCUBERTA I MORRAL, H. HOFMEISTER and P. ROCA I CABARROCAS, J. Non-cryst. Solids 284 (2002) 299–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celotti, G., Tampieri, A., Sprio, S. et al. Crystallinity in apatites: how can a truly disordered fraction be distinguished from nanosize crystalline domains?. J Mater Sci: Mater Med 17, 1079–1087 (2006). https://doi.org/10.1007/s10856-006-0534-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0534-7

Keywords

Navigation