Skip to main content
Log in

The use of advanced diffraction methods in the study of the structure of a bioactive calcia: silica sol-gel glass

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Sol-gel derived calcium silicate glasses may be useful for the regeneration of damaged bone. The mechanism of bioactivity is as yet only partially understood but has been strongly linked to calcium dissolution from the glass matrix. In addition to the usual laboratory-based characterisation methods, we have used neutron diffraction with isotopic substitution to gain new insights into the nature of the atomic-scale calcium environment in bioactive sol-gel glasses, and have also used high energy X-ray total diffraction to probe the nature of the processes initiated when bioactive glass is immersed in vitro in simulated body fluid. The data obtained point to a complex calcium environment in which calcium is loosely bound within the glass network and may therefore be regarded as facile. Complex multi-stage dissolution and mineral growth phases were observed as a function of reaction time between 1 min and 30 days, leading eventually, via octacalcium phosphate, to the formation of a disordered hydroxyapatite (HA) layer on the glass surface. This methodology provides insight into the structure of key sites in these materials and key stages involved in their reactions, and thereby more generally into the behaviour of bone-regenerative materials that may facilitate improvements in tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. HENCH and J. WILSON, “Introduction to Bioceramics” (World Scientific, Singapore, 1993).

    Google Scholar 

  2. L.L. HENCH, Biomaterials 19 (1998) 1419.

    Article  CAS  Google Scholar 

  3. R. LI, A. E. CLARK and L. L. HENCH, “Chemical Processing of Advanced Materials” (Wiley, New York, 1992).

  4. M. M. PEREIRA, A. E. CLARK and L. L. HENCH, J. Mater. Synth. Proc. 2 (1994) 189.

    Google Scholar 

  5. P. SARAVANAPAVAN, J. R. JONES, R. S. PRYCE and L. L. HENCH, J. Biomed. Mat. Res. A. 66A (2003) 110.

    Article  CAS  Google Scholar 

  6. P. SARAVANAPAVAN, S. VERRIER, J. R. JONES, R. BEILBY, V. J. SHIRTLIFF, L. L. HENCH and J. M. POLAK, Bio-Med. Mater. Eng. 14 (2004) 467.

    Google Scholar 

  7. M. CERRUTI, G. MAGNACCA, V. BOLIS and C. MORTERRA, J. Mater. Chem. 13 (2003) 1279.

    Article  CAS  Google Scholar 

  8. I. D. XYNOS, A. J. EDGAR, L. D. K. BUTTERY, L. L. HENCH and J. M. POLAK, J. Biomed. Mater. Res. 155 (2000) 151.

    Google Scholar 

  9. F. E. SOWREY, L. J. SKIPPER, D. M. PICKUP, K. O. DRAKE, Z. LIN, M. E. SMITH and R. J. NEWPORT, Phys. Chem. Chem. Phys. 6 (2004) 188.

    Article  CAS  Google Scholar 

  10. L. J. SKIPPER, F. E. SOWREY, D. M. PICKUP, V. FITZGERALD, R. RASHID, K. O DRAKE, Z. LIN, P. SARAVANAPAVAN, L. L. HENCH, M. E. SMITH and R. J. NEWPORT, J. Biomed. Mater. Res. 70A (2004) 354.

    Article  CAS  Google Scholar 

  11. L. J. SKIPPER, F. E. SOWREY, D. M. PICKUP, R. J. NEWPORT, K. O. DRAKE, Z. LIN, M. E. SMITH, P. SARAVANAPAVAN and L. L. HENCH, Mater. Sci. Forum. 480–481 (2004) 21.

    Google Scholar 

  12. M. C. ECKERSLEY, P. H. GASKELL, A. C. BARNES and P. CHIEUX, Nature 335 (1988) 6190.

    Article  Google Scholar 

  13. P. H. GASKELL, M. C. ECKERSLEY, A. C. BARNES and P. CHIEUX, ibid. 350 (1991) 6320.

    Article  Google Scholar 

  14. D. M. PICKUP, F. E. SOWREY, R. J. Newport, P. N. GUNAWIDJAJA, K. O. DRAKE and M. E. SMITH, J. Phys. Chem. B 108 (2004) 10872.

    Article  CAS  Google Scholar 

  15. Z. LIN, M. E. SMITH, F. E. SOWREY and R. J. NEWPORT, Phys. Rev. B 69 (2004) art. No. 224107.

  16. Y. LENG, X. LU and J. CHEN, Key Eng. Mater. 254–256 (2004) 339.

    Article  Google Scholar 

  17. P. SARAVANAPAVAN and L. L. HENCH, J. Non-Crys. Solids 318 (2003) 1.

    Article  CAS  Google Scholar 

  18. P. SARAVANAPAVAN and L. L. HENCH, J. Biomed. Mater. Res. 54 (2001) 608.

    Article  CAS  Google Scholar 

  19. A. C. HANNON, Nucl. Instrum. Methods Phys. Res. A 551 (2005) 88.

    Article  CAS  Google Scholar 

  20. B. E. WARREN, “X-Ray Diffraction” (Dover Publications Inc., New York, 1990).

    Google Scholar 

  21. D. M. PICKUP, G. MOUNTJOY, M. A. ROBERTS, G. W. WALLIDGE, R. J. NEWPORT and M. E. SMITH, J. Phys.: Condens. Mater. 12 (2000) 3521.

    Article  CAS  Google Scholar 

  22. P. H. GASKELL, “Materials Science and Technology,” vol. 9. (VCH, Weinhaim, 1991).

  23. C. A. YARKER, P. A. V. JOHNSON, A. C. WRIGHT, J. WONG, R. B. GREEGOR, F. W. LYTLE and R. N. SINCLAIR, J. Non-Cryst. Solids 79 (1986) 117.

    Article  CAS  Google Scholar 

  24. L. J. SKIPPER, F. E. SOWREY, R. J. NEWPORT, Z. LIN and M. E. SMITH, Phys. & Chem. Glasses 46 (2005) 372.

    CAS  Google Scholar 

  25. T. KOKUBO, H-M. KIM and M. KAWASHITA, Biomaterials 24 (2003) 2161.

    Article  CAS  Google Scholar 

  26. S. J. HIBBLE, A. C. HANNON and I. D. FAWCETT, J. Phys.: Condens. Matter. 11 (1999) 9203.

    Article  CAS  Google Scholar 

  27. N. S. MANDEL, Acta Crystallogr. Sect. B: Struct. Sci. B31 (1973) 1730.

    Google Scholar 

  28. K. S. MAMEDOV and N. V. BELOV, Dokl. Akad. Nauk 107 (1956) 465.

    Google Scholar 

  29. T. ITO, R. SADANAGA, Y. TAKEUCHI and M. TOKONAMI, Proc. Japan Acad. 45 (1969) 913.

  30. Y. OHASHI, Phys. Chem. Miner. (Germany) 10 (1984) 217.

  31. R. M. WILSON, J. C. ELLIOT and S. E. P. DOWKER, Am. Min. 84 (1999) 1406.

    CAS  Google Scholar 

  32. L. J. SKIPPER, F. E. SOWREY, R. J. NEWPORT, Z. LIN and M. E. SMITH, Phys. & Chem. Glasses 46 (2005) 372.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert John Newport.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newport, R.J., Skipper, L.J., Carta, D. et al. The use of advanced diffraction methods in the study of the structure of a bioactive calcia: silica sol-gel glass. J Mater Sci: Mater Med 17, 1003–1010 (2006). https://doi.org/10.1007/s10856-006-0436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0436-8

Keywords

Navigation