Skip to main content
Log in

Simple processed polyvinyl alcohol/multi-wall carbon nanotube polymeric nanocomposites for high-performance optoelectronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocomposites of polyvinyl alcohol (PVA)/multi-wall carbon nanotube (MWCNT) were prepared using the simple solution cast technique with different contents of MWCNT (0, 0.05, 0.25, 0.5, and 1( wt%. XRD confirmed the semi-crystalline character of PVA structure which is slightly affected by adding MWCNT. At wavelengths between 200 and 2500 nm, optical characteristics are investigated. A decrease was seen in the optical energy band gap (Eg) with the inclusion of MWCNTs for both the allowed indirect and direct transitions. A normal dispersion within the examined wavelength domain was provided by an analysis of the index of refraction (n). The decrement in the band gap (Eg) and the increment in the index of refraction n due to addition of MWCNT suggests their use in optical devices. At RT, the dielectric constant ɛ′, loss ɛ″, and ac conductivity σac were found to depend on frequency (100 Hz–1 MHz) and MWCNT concentration. The PVA films tend to have higher σac when MWCNT is added, which may serve in several semiconductor applications. The optical power limiting results indicated that PVA samples containing MWCNT could attenuate the He–Ne laser beam (λ = 638.2 nm). The results demonstrate the utility of PVA-MWCNTs nanocomposite materials in various applications such as UV shielding, photo sensors, tunable band gap devices, refractive index-controlled optical devices, and next-generation flexible optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All the data are available in the manuscript.

References

  1. C.A.I. Merino, J.E.L. Sillas, J.M. Meza, J.M.H. Ramirez, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.11.348

    Article  Google Scholar 

  2. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, J. Market. Res. 8(1), 904–913 (2018). https://doi.org/10.1016/j.jmrt.2018.04.023

    Article  CAS  Google Scholar 

  3. G. Rahman, Z. Najaf, A. Mehmood, S. Bilal, A. Shah, S. Mian, G. Ali, Carbon Res. (2019). https://doi.org/10.3390/c5010003

    Article  Google Scholar 

  4. S.Z. Al-Sheheri, Z.M. Al-Amshany, Q.A. Al-Sulami, N.Y. Tashkandi, M.A. Hussein, R.M. El-Shishtawy, Des. Monomers Polym. (2018). https://doi.org/10.1080/15685551.2019.1565664

    Article  Google Scholar 

  5. M. Šupová, G.S. Martynková, K. Barabaszová, Sci. Adv. Mater. (2011). https://doi.org/10.1166/sam.2011.1136

    Article  Google Scholar 

  6. H. Soleimani, N. Yahya, M.K. Baig, L. Khodapanah, M. Sabet et al., Oil Gas Res 1, 104 (2015). https://doi.org/10.4172/2472-0518.1000104

    Article  Google Scholar 

  7. J. Qian, J.H. Pu, X.J. Zha, R.Y. Bao, Z.Y. Liu, M.B. Yang, W. Yang, J. Polym. Res. (2019). https://doi.org/10.1007/s10965-019-1915-1

    Article  Google Scholar 

  8. E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, H.M. Zidan, J. Mat. Sci. 30, 15521–15533 (2019). https://doi.org/10.1007/s10854-019-01929-2

    Article  CAS  Google Scholar 

  9. A.M. Ismail, M.I. Mohammed, I.S. Yahia, Optics Laser Technol. 134, 106600 (2021). https://doi.org/10.1016/j.optlastec.2020.106600

    Article  CAS  Google Scholar 

  10. C.U. Devi, A.K. Sharma, V.V.R.N. Rao, Mater. Lett. 56, 167–174 (2002)

    Article  CAS  Google Scholar 

  11. T.N. Zhou, X.D. Qi, Q. Fu, Express Polym Lett 7(9), 747–755 (2013)

    Article  CAS  Google Scholar 

  12. M. Youssry, M. Al-Ruwaidhi, M. Zakeri et al., Emergent Mater. 3, 25–32 (2020). https://doi.org/10.1007/s42247-020-00076-3

    Article  CAS  Google Scholar 

  13. Z. Tang, Y. Lei, B. Guo, L. Zhang, D. Jia, Polymer 53, 673–680 (2012)

    Article  CAS  Google Scholar 

  14. M.I. Mohammed, I.S. Yahia, Phys. Scr. 97(6), 065813 (2022)

    Article  CAS  Google Scholar 

  15. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabia, J. Mat. Res. Tech. 8(1), 904–913 (2019)

    Article  CAS  Google Scholar 

  16. M.I. Mohammed, I.S. Yahia, S.A. El-Mongy, Synthesis, characterization, and tailoring variations in the linear optical of erbium-ions doped (PVA/PVP) polymeric composites for optical devices: Improvement of the dielectric characteristics. J. Appl. Polym. Sci. 140(19), e53821 (2023). https://doi.org/10.1002/app.53821

    Article  CAS  Google Scholar 

  17. I.S. Yahia, M.I. Mohammed, J. Mater. Sci. Mater. Electron. 29, 8555–8563 (2018)

    Article  CAS  Google Scholar 

  18. N. Sabry, M.I. Mohammed, I.S. Yahia, Mater. Res. Express 6, 115339 (2019)

    Article  Google Scholar 

  19. Z.A. Alrowaili, M. Ezzeldien, M.I. Mohammed, I.S. Yahia, Results Phys 18, 103203 (2020)

    Article  Google Scholar 

  20. S. Deb, D. Sarkar, Optik 157, 1115–1121 (2018)

    Article  CAS  Google Scholar 

  21. M.I. Mohammed, I.S. Yahia, Phys. Scr. 97, 065813 (2022). https://doi.org/10.1088/1402-4896/ac6d1e

    Article  CAS  Google Scholar 

  22. R. Venugopal, R.A. Rajeshwar, N. Narsimlu, C. Srinivas, IOSR J. Appl. Phys. 6, 38–44 (2022). https://doi.org/10.9790/4861-1406013844

    Article  Google Scholar 

  23. M. Mohammed, Opt. Mater. 133, 112916 (2022). https://doi.org/10.1016/j.optmat.2022.112916

    Article  CAS  Google Scholar 

  24. J. Tauc, A. Menth, D. Wood, Phys. Rev. Lett. 25, 749–752 (1970)

    Article  CAS  Google Scholar 

  25. V.K. Saraswat, V. Kishore, Chalcogenide Lett. 4, 61–64 (2007)

    CAS  Google Scholar 

  26. H.M. Shanshool, M. Yahaya, W.M. Yunus, I.Y. Abdullah, Opt. Quant. Elect. 48, 57 (2016)

    Article  Google Scholar 

  27. H.M. Gomaa, T.H. AlAbdulaal, I.S. Yahia et al., J. Electron. Mater. 51, 5897–5907 (2022). https://doi.org/10.1007/s11664-022-09842-x

    Article  CAS  Google Scholar 

  28. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  29. A.M. Ismail, M.I. Mohammed, E.G. El-Metwally, Ind. J. Phys. 93, 175–183 (2019)

    Article  CAS  Google Scholar 

  30. J.I. Pankove, Optical Processes in Semiconductors (Dover Publication, New York, 1975)

    Google Scholar 

  31. T.S. Moss, Phys. Status Solidi 131(2), 415–427 (1985)

    Article  CAS  Google Scholar 

  32. N.M. Ravindra, S. Auluck, V.K. Srivastava, On the Penn gap in semiconductors. Phys Stat Sol B 93, K155–K160 (1979)

    Article  CAS  Google Scholar 

  33. P. Hervé, L.K. Vandamme, General relation between refractive index and energy gap in semiconductors. Infrared Phys. 35, 609–615 (1994)

    Article  Google Scholar 

  34. R.R. Reddy, K. Ram Gopal, K. Narasimhulu et al., Interrelationship between structural, optical, electronic and elastic properties of materials. J. Alloys Compd. 473, 28–35 (2009)

    Article  CAS  Google Scholar 

  35. M. Anani, C. Mathieu, S. Lebid, Y. Amar, Z. Chama, H. Abid, Comput. Matter. Sci. 41, 570 (2008)

    Article  CAS  Google Scholar 

  36. V. Kumar, J.K. Singh, Ind. J. Pure Appl. Phys. 48, 571 (2010)

    CAS  Google Scholar 

  37. F.M. Ali, J. Inorg. Organomet. Polym. 30, 2418–2429 (2020)

    Article  CAS  Google Scholar 

  38. A.A. Ahmad, Q.M. Al-Bataineh, A.A. Bani-Salameh, A.D. Telfah, Surf. Interfaces 33, 102202 (2022). https://doi.org/10.1016/j.surfin.2022.102202

    Article  CAS  Google Scholar 

  39. L. Hannachi, N. Bouarissa, Superlatt. Microstruct. 44, 794–801 (2008)

    Article  CAS  Google Scholar 

  40. Y. Akaltun, M.A. Yıldırım, A. Ateş, M. Yıldırım, Opt. Commun. 284, 2307–2311 (2011)

    Article  CAS  Google Scholar 

  41. H. Ticha, L. Tichy, J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    CAS  Google Scholar 

  42. C.C. Wang, Phys. Rev. B 2, 2045 (1970)

    Article  Google Scholar 

  43. J. Wynne, Phys. Rev. Lett. 29, 650 (1972)

    Article  CAS  Google Scholar 

  44. H. Nasu, J.D. Mackenzie, Opt. Eng. 26, 262102 (1987)

    Article  Google Scholar 

  45. Smith, W. L., in Weber M. J.; Ed.; Handbook of Laser Science and Technology, Chemical Rubber Co., Boca Raton, 1986,

  46. M.I. Mohammed, W. Jilani, A. Bouzidi, H.Y. Zahran, M. Jalalah, F.A. Harraz, I.S. Yahia, Opt. Quant. Electron. 53, 280 (2021)

    Article  CAS  Google Scholar 

  47. M.I. Mohammed, A. Bouzidi, H.Y. Zahran, M. Jalalah, F.A. Harraz, I.S. Yahia, J. Mater. Sci. 32, 4416–4436 (2021)

    CAS  Google Scholar 

  48. M. Shkir, M.T. Khan, V. Ganesh, I.S. Yahia, B. Haq, A. Almohammedi, P.S. Patil, S.R. Maidur, S. AlFaify, Opt. Laser Technol. 108, 609–618 (2018)

    Article  CAS  Google Scholar 

  49. M.A. Assiri, M.A. Manthrammel, A.M. Aboraia, I.S. Yahia, H.Y. Zahran, V. Ganesh, M. Shkir, S. AlFaify, A.V. Soldatov, Physica B 552, 62–70 (2019)

    Article  CAS  Google Scholar 

  50. M.M. Abutalib, I.S. Yahia, J. Mater. Sci. 29, 19798–19804 (2018)

    CAS  Google Scholar 

  51. M.I. Mohammed, S.S. Fouad, N. Metha, J. Mater. Sci. Mater. 29, 18271–18281 (2018)

    Article  CAS  Google Scholar 

  52. A.K. Himanshu, B.K. Choudhary, S.N. Singh, D.C. Gupta, S.K. Bandyopadhayay, T.P. Sinha, Solid State Sci. 12, 1231–1234 (2010)

    Article  CAS  Google Scholar 

  53. P. Maji, R.B. Choudhary, M. Majhi, Optik 127, 4848–4853 (2016)

    Article  CAS  Google Scholar 

  54. Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, G.-H. Hu, Prog. Mater. Sci. 57, 660–723 (2012)

    Article  CAS  Google Scholar 

  55. S. El-Gamal, A.M. Ismail, R. El-Mallawany, J. Mater. Sci. 26, 7544–7553 (2015)

    CAS  Google Scholar 

  56. X.L. Xu, C.J. Yang, J.H. Yang, T. Huang, Y. Wang, Z.-W. Zhou, Compos. Part B 109, 91–100 (2017)

    Article  CAS  Google Scholar 

  57. S. More, R. Dhokne, S. Mohari, Mater. Res. Express 4, 055302 (2017)

    Article  Google Scholar 

Download references

Funding

The “Research Center for Advanced Materials Science (RCAMS)” at King Khalid University, Saudi Arabia, for funding this work under the grant number RCAMS/KKU/026-23.

Author information

Authors and Affiliations

Authors

Contributions

MIM, HYZ, SZ, ISY, AMI Study conception and design: data collection; analysis and interpretation of results: draft manuscript preparation; reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to M. I. Mohammed.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Kumar–Singh relation:

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, M.I., Zahran, H.Y., Zyoud, S. et al. Simple processed polyvinyl alcohol/multi-wall carbon nanotube polymeric nanocomposites for high-performance optoelectronics. J Mater Sci: Mater Electron 35, 515 (2024). https://doi.org/10.1007/s10854-024-12144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12144-z

Navigation