Skip to main content

Advertisement

Log in

Role of annealing environments on the local electronic and optical properties of zinc oxide films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The exploration of zinc oxide (ZnO) has seen rapid growth due to its wide bandgap, high thermal conductivity, and high electron mobility within its nanostructures, making it highly valuable for applications in electronic and optical devices. This study involves the deposition of ZnO nanostructures onto a quartz substrate using the thermal evaporation deposition technique. The research delves into the influence of various annealing environments on morphology and electronic/atomic structures. X-ray Diffraction (XRD) analysis reveals the development of the ZnO phase with a preferred orientation when annealed in a mixture of hydrogen and argon gases. It was observed that the films do not transform into complete ZnO for the as-prepared and for lower temperatures (< 400 °C). Annealing at lower temperatures or room temperature retains the metallic Zn. When subjected to higher annealing temperatures in the presence of oxygen and ambient conditions, formation of ZnO hexagonal wurtzite structures was evident. A wide variation in the morphology was observed for films annealed in different annealing environments, from petal-like structures to rods. Both the band edge and defect emissions using photoluminescence were observed to vary with varying annealing conditions. In-situ XANES uncovers the reduction of Zn and metallic nature noticed in the as-prepared sample and argon annealing at 400 °C. A higher charge transfer by Zn with a prominent delocalization of Zn 4p state was observed in oxygen annealing environment at 400 °C with an enhanced coordination of Zn–O and Zn–Zn. These distinct photoluminescence emissions from the films were correlated to the electronic structure and local atomic structure. Further, this investigation provides a path to develop next-generation optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not Applicable

Code availability

Not Applicable

References

  1. A.A. Mosquera, D. Horwat, A. Rashkovskiy, A. Kovalev, P. Miska, A. Wainstein, J.M. Albella, J.L. Endrino, Exciton and core-level electron confinement effects in transparent ZnO thin films. Sci. Rep. 3, 1714 (2013). https://doi.org/10.1038/srep01714

    Article  ADS  CAS  PubMed Central  Google Scholar 

  2. Z.L. Wang, Nanostructures of zinc oxide. Mat. Today. 7, 26–33 (2004). https://doi.org/10.1016/S1369-7021(04)00286-X

    Article  CAS  Google Scholar 

  3. Z.S.A. Ridha, A.O. Radam, Effect and study of the base temperature on the structural and optical properties of zinc oxide films prepared by thermal evaporation method in a vacuum. AIP Confer. Proceed. 2547, 030004 (2022). https://doi.org/10.1063/5.0114795

    Article  CAS  Google Scholar 

  4. R. Wahab, N. Kaushik, F. Khan, N.K. Kaushik, E.H. Choi, J. Musarrat, A.A. Al-Khedhairy, Self-styled ZnO nanostructures promotes the cancer cell damage and supresses the epithelial phenotype of glioblastoma. Sci. Rep. 6, 1–13 (2016). https://doi.org/10.1038/srep19950

    Article  CAS  Google Scholar 

  5. K.M.B. Urs, V. Kamble, Surface photovoltage response of zinc oxide microrods on prismatic planes: effect of UV, temperature and oxygen ambience. J. Mat. Sc : Mater. Electr. 32, 6414–6424 (2021). https://doi.org/10.1007/s10854-021-05359-x

    Article  CAS  Google Scholar 

  6. R. Triboulet, Growth of ZnO bulk crystals: a review. Prog. Cryst. Growth Charact. Mater. 60, 1–14 (2014). https://doi.org/10.1016/j.pcrysgrow.2013.12.001

    Article  CAS  Google Scholar 

  7. N. Sakagami, M. Yamashita, T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, Variation of electrical properties on growth sectors of ZnO single crystals. J. Cryst. Growth 229, 98–103 (2001). https://doi.org/10.1016/S0022-0248(01)01126-5

    Article  ADS  CAS  Google Scholar 

  8. E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, T. Fukuda, Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method. J. Cryst. Growth 260, 166–170 (2004). https://doi.org/10.1016/j.jcrysgro.2003.08.019

    Article  ADS  CAS  Google Scholar 

  9. R. Triboulet, J. Perriere, Epitaxial growth of ZnO films. Prog. Cryst. Growth Characteriz. Mater. 47, 65–138 (2003). https://doi.org/10.1016/j.pcrysgrow.2005.01.003

    Article  CAS  Google Scholar 

  10. P. Sharma, M.R. Hasan, N.K. Mehto, A. Deepak, Bishoyi, J. Narang, 92 years of zinc oxide: has been studied by the scientific community since the 1930s-An overview. Sens. Internat. 3, 100182 (2022). https://doi.org/10.1016/j.sintl.2022.100182

    Article  Google Scholar 

  11. A.K. Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: a review. Materials. 7, 2833–2881 (2014). https://doi.org/10.3390/ma7042833

    Article  ADS  CAS  Google Scholar 

  12. A. Purohit, S. Chander, A. Sharma, S.P. Nehra, M.S. Dhaka, Mpact of low temperature annealing on structural, optical, electrical and morphological properties of ZnO thin films grown by RF sputtering for photovoltaic applications. Opt. Mat. 49, 51–58 (2015). https://doi.org/10.1016/j.optmat.2015.08.021

    Article  CAS  Google Scholar 

  13. T.K. Subramanyam, B.S. Naidu, S. Uthanna, Physical properties of zinc oxide films prepared by dc reactive magnetron sputtering at different sputtering pressures. Cryst. Res. Technol. 35, 1193–1202 (2000). https://doi.org/10.1002/1521-4079

    Article  CAS  Google Scholar 

  14. Y.Y. Villanueva, D.R. Liu, P.T. Cheng, Pulsed laser deposition of zinc oxide. Thin Solid Films. 501, 366–369 (2006). https://doi.org/10.1016/j.tsf.2005.07.152

    Article  ADS  CAS  Google Scholar 

  15. P.B. Taunk, R. Das, D.P. Bisen, R.K. Tamrakar, Structural characterization and photoluminescence properties of zinc oxide nano particles synthesized by chemical route method. J. of Radiat. Research and Appl. Sc. 8, 433–438 (2015). https://doi.org/10.1016/j.jrras.2015.03.006

    Article  Google Scholar 

  16. M. Jouya, F. Taromian, M.A. Abolkarlou, Growth of Zn thin films based on electric field by thermal evaporation method and effect of oxidation time on physical properties of ZnO nanorods. J. Mater. Sc : Mater. Electr. 31, 8680–8689 (2020). https://doi.org/10.1007/s10854-020-03403-w

    Article  CAS  Google Scholar 

  17. R. Crapanzano, I. Villa, S. Mostoni, M.D. Arienzo, B.D. Credico, M. Fasoli, R. Scotti, A. Vedda, Morphology related defectiveness in ZnO luminescence: from bulk to nano-size. Nanomaterials 10(10), 1983 (2020). https://doi.org/10.3390/nano10101983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Najib, F. Bakan, N. Abdullayeva, R. Bahariqushchi, S. Kasap, G. Franzò, M. Sankir, N.D. Sankir, S. Mirabella, E. Erdem, Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale. 12, 16162–16172 (2020). https://doi.org/10.1039/D0NR03921G

    Article  CAS  PubMed  Google Scholar 

  19. E.Y. Shaba, J.O. Jacob, J.O. Tijani, M.A.T. Suleiman, A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Appl. Water Sc. 11, 1–41 (2021). https://doi.org/10.1007/s13201-021-01370-z

    Article  CAS  Google Scholar 

  20. N. Kati, S. Ozan, T. Yildiz, A. Korkmaz, Controlling of the structural characteristics of ZnO nanomaterials by reaction pressure and reaction time. Sci. Sinter. 54, 1–8 (2022)

    Article  Google Scholar 

  21. S.D. Kshirsagar, U.P. Shaik, M.G. Krishna, S.P. Tewari, Photoluminescence study of ZnO nanowires with zn residue. J. of Lumin. 136, 26–31 (2013). https://doi.org/10.1016/j.jlumin.2012.11.018

    Article  ADS  CAS  Google Scholar 

  22. U.P. Shaik, P.A. Kumar, M.G. Krishna, S.V. Rao, Morphological manipulation of the nonlinear optical response of ZnO thin films grown by thermal evaporation. Mat. Res. Exp. 1, 046201 (2014). https://doi.org/10.1088/2053-1591/1/4/046201

    Article  CAS  Google Scholar 

  23. A.V. Kolobov, H. Oyanagi, K. Tanaka, K. Tanaka, Structural study of amorphous selenium by in situ EXAFS: observation of photoinduced bond alternation. Physic Rev. B 55, 726 (1997). https://doi.org/10.1103/PhysRevB.55.726

    Article  ADS  CAS  Google Scholar 

  24. L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D.K. Dutta, P. Sengupta, Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Appl Catal. A: Gen. 490, 42–49 (2015). https://doi.org/10.1016/j.apcata.2014.10.053

    Article  CAS  Google Scholar 

  25. N. Pathak, P.S. Ghosh, S. Saxena, D. Dutta, A.K. Yadav, D. Bhattacharyya, S.N. Jha, R.M. Kadam, Exploring defect-induced emission in ZnAl2O4: an exceptional color-tunable phosphor material with diverse lifetimes. Inorganic Chem. 57, 3963–3982 (2018). https://doi.org/10.1021/acs.inorgchem.8b00172

    Article  CAS  Google Scholar 

  26. S. Choudhary, V. Kumar, V. Malik, R. Nagarajan, S. Annapoorni, R. Malik, Synthesis of ZnO@ Ag dumbbells for highly efficient visible-light photocatalysts. J. Phy.: Condens. Matter 32, 405202 (2020). https://doi.org/10.1088/1361-648X/ab9e2e

    Article  CAS  Google Scholar 

  27. N.K. Singh, S. Shrivastava, S. Rath, S. Annapoorni, Optical and room temperature sensing properties of highly oxygen deficient flower-like ZnO nanostructures. Appl. Surf. Sc. 257, 1544–1549 (2010). https://doi.org/10.1016/j.apsusc.2010.08.093

    Article  ADS  CAS  Google Scholar 

  28. H. Zhang, J. Zhenhong, Application of porous Silicon Microcavity to enhance photoluminescence of ZnO/PS nanocomposites in UV light emission. Optik 130, 1183–1190 (2017). https://doi.org/10.1016/j.ijleo.2016.11.131

    Article  ADS  CAS  Google Scholar 

  29. S. Ilican, Y. Caglar, M. Caglar, Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. J. Optoelectr. Advanc. Mater. 10, 2578–2583 (2008)

    CAS  Google Scholar 

  30. N.K. Singh, N. Tripathi, S. Rath, S. Annapoorni, Structural, morphological, and optical characterisation of ZnO nanostructures fabricated by electrochemical deposition. J. Nanosci. Nanotech. 9, 5608–5613 (2009). https://doi.org/10.1166/jnn.2009.1149

    Article  CAS  Google Scholar 

  31. M. Dhingra, S. Shrivastava, P.S. Kumar, S. Annapoorni, Polyaniline mediated enhancement in band gap emission of zinc oxide. Compos. Part. B: Eng. 45, 1515–1520 (2013). https://doi.org/10.1016/j.compositesb.2012.09.020

    Article  CAS  Google Scholar 

  32. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv Funct. Mat. 20, 561–572 (2010). https://doi.org/10.1002/adfm.200901884

    Article  CAS  Google Scholar 

  33. B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943–945 (2001). https://doi.org/10.1063/1.1394173

    Article  ADS  CAS  Google Scholar 

  34. S. Shankar, M. Saroja, M. Venkatachalam, G. Parthasarathy, Photocatalytic degradation of methylene blue dye using ZnO thin films. Int. J. Chem. Concept. 3, 180–188 (2017). https://doi.org/10.1088/1361-6528/aca910

    Article  CAS  Google Scholar 

  35. A. Dadlani, S. Acharya, O. Trejo, D. Nordlund, M. Peron, J. Razavi, F. Berto, F.B. Prinz, J. Torgersen, Revealing the bonding environment of Zn in ALD Zn (o, S) buffer layers through X-ray absorption spectroscopy. ACS Appl. Mater. & Interfac. 9, 39105–39109 (2017). https://doi.org/10.1021/acsami.7b06728

    Article  CAS  Google Scholar 

  36. J.S. Jeon, B.H. Kim, C.I. Park, S.Y. Seo, C. Kwak, S.H. Kim, S.W. Han, In-situ X-ray absorption fine structure study of TiO2 nanoparticles under ultraviolet light. Jpn. J. Appl. Phys 49, 031105 (2010). https://doi.org/10.1143/JJAP.49.031105

    Article  ADS  CAS  Google Scholar 

  37. K.S.K. Sato, H.K.Y.H.K. Yoshida, Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn. J. Appl. Phys. 39, L555 (2000). https://doi.org/10.1143/JJAP.39.L555

    Article  ADS  CAS  Google Scholar 

  38. B. Gilbert, B.H. Frazer, H. Zhang, F. Huang, J.F. Banfield, D. Haskel, J.C. Lang, G. Srajer, G.D. Stasio, X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide. Phys. Rev. B 66, 245205 (2002). https://doi.org/10.1103/PhysRevB.66.245205

    Article  ADS  CAS  Google Scholar 

  39. E. Castorina, E.D. Ingall, P.L. Morton, D.A. Tavakoli, B. Lai, Zinc K-edge XANES spectroscopy of mineral and organic standards. J. of Synchrot Radiati. 26, 1302–1309 (2019). https://doi.org/10.1107/S160057751900540X

    Article  CAS  Google Scholar 

  40. J.W. Chiou, J.C. Jan, H.M. Tsai, C.W. Bao, W.F. Pong, M.H. Tsai, I.H. Hong, Electronic structure of ZnO nanorods studied by angle-dependent x-ray absorption spectroscopy and scanning photoelectron microscopy. Appl. Phys. Lett. 84, 3462–3464 (2004). https://doi.org/10.1063/1.1737075

    Article  ADS  CAS  Google Scholar 

  41. P. Lu, H. Zhang, T. Satoh, T. Ohkubo, A. Yamazaki, K. Takano, T. Kamiya, Investigation on the stability of water-soluble ZnO quantum dots in KB cells by X-ray fluorescence and absorption methods. Nucl. Instrum. Methods Phys. Res. Sec B: Beam Interact. Maters At. 269, 1940–1943 (2011). https://doi.org/10.1016/j.nimb.2011.05.009

    Article  ADS  CAS  Google Scholar 

  42. W. Xu, Y. Liu, B. Chen, D. Liu, Y. Lin, A. Marcelli, Nano-inclusions: a novel approach to tune the thermal conductivity of In2O3. Phys. Chem. Chem. Phys. 15, 17595–17600 (2013). https://doi.org/10.1039/C3CP52942H

    Article  CAS  PubMed  Google Scholar 

  43. C. Wattanawikkam, W. Pecharapa, Structural studies and photocatalytic properties of Mn and Zn co-doping on TiO2 prepared by single step sonochemical method. Radiat. Phys. And Chem. 171, 108714 (2020). https://doi.org/10.1016/j.radphyschem.2020.108714

    Article  CAS  Google Scholar 

  44. Z. Wu, Y. Zhou, X. Zhang, S. Wei, D. Chen, Structure of grain boundaries in nanostructured ZnO. Appl. Phys. Lett. 84, 4442–4444 (2004). https://doi.org/10.1063/1.1759060

    Article  ADS  CAS  Google Scholar 

  45. H. Zhong, M.G. Asl, K.H. Ly, J. Zhang, J. Ge, M. Wang, Z. Liao, Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Communic. 11, 1–10 (2020). https://doi.org/10.1038/s41467-020-15141-y

    Article  ADS  CAS  Google Scholar 

  46. P. Satyarthi, S. Ghosh, B. Pandey, P. Kumar, C.L. Chen, C.L. Dong, W.F. Pong, D. Kanjilal, K. Asokan, P. Srivastava, Coexistence of intrinsic and extrinsic origins of room temperature ferromagnetism in as implanted and thermally annealed ZnO films probed by x-ray absorption spectroscopy. J. Appl. Phys. 113, 183708 (2013). https://doi.org/10.1063/1.4804253

    Article  ADS  CAS  Google Scholar 

  47. D. Joseph, N. Patra, Chemical shift at the X-ray K-Absorption edge of Zn in some zn compounds. Madridge J. Anal. Sci. Instru. 2, 25–27 (2017). https://doi.org/10.18689/mjai-1000106

    Article  Google Scholar 

  48. D.R. Roberts, R.G. Ford, D.L. Sparks, Kinetics and mechanisms of Zn complexation on metal oxides using EXAFS spectroscopy. J. Colloid Interf. Sci. 263, 364–376 (2003). https://doi.org/10.1016/S0021-9797(03)00281-9

    Article  ADS  CAS  Google Scholar 

  49. S. Erat, O.M. Ozkendir, S. Yildirimcan, S. Gunaydin, M. Harfouche, B. Demir, A. Braun, Study on crystallographic and electronic structure of micrometre-scale ZnO and ZnO: B rods via X-ray absorption fine-structure spectroscopy. J. Synch. Radiat. 28, 448–454 (2021). https://doi.org/10.1107/S1600577520015866

    Article  CAS  Google Scholar 

  50. S. Mukherjee, S.N. Katea, E.M. Rodrigues, C.U. Segre, E. Hemmer, P. Broqvist, H. Rensmo, G. Westin, Entrapped molecule-like europium-oxide clusters in zinc oxide with nearly unaffected host structure. Small 19, 2203331 (2022). https://doi.org/10.1002/smll.202203331

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to Institute of Eminence, IoE 2021-22, and 2022-23, project no. IOE/2021-22/12/FRP, and IOE/2023-24/12/FRP University of Delhi for their funding. To University Science Instrumentation Center (USIC), University of Delhi for the XRD, SEM facilities. The National Synchrotron Radiation Research Center, NSSRC, Hsinchu, Taiwan for the PL and EXAFS facility. The financial support given to one of the authors, AM in the form of fellowship by CSIR is gratefully appreciated. The authors would like to acknowledge the TEEP Asia plus program and MoST project grant 110-2112-M-032-013-MY3, Taiwan, for all the financial support.

Author information

Authors and Affiliations

Authors

Contributions

AM and SA: devised the area of study. AM: performed the experiments. AKT and C-LD: supervised the analysis of synchrotron data. C-LD and C-LC: provided all the useful standard data. C-LD: verified all the synchrotron results. AM: wrote the manuscript. KA: supervised the initial draft of the manuscript and critically reviewed the manuscript. All authors carefully commented on the manuscript. SA: provided the critical analysis and directed the reported manuscript.

Corresponding author

Correspondence to S. Annapoorni.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The paper reflects the authors’ own research and analysis in a truthful and complete manner. No experiments involving human tissue were carried out.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motla, A., Kumaravelu, T.A., Dong, CL. et al. Role of annealing environments on the local electronic and optical properties of zinc oxide films. J Mater Sci: Mater Electron 35, 267 (2024). https://doi.org/10.1007/s10854-024-12018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12018-4

Navigation