Skip to main content
Log in

Unveiling the impact of TiCl4 surface passivation on dye-sensitized solar cells: enhancing charge transfer kinetics and power conversion efficiency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cells (DSSCs) have gained considerable attention as a viable substitute for traditional silicon-based solar cells owing to their cost-effectiveness and superior efficiency. However, one of the major challenges in developing DSSCs is their susceptibility to recombination losses, which can significantly reduce their efficiency. Surface passivation is a key approach to address this issue by reducing the density of surface states and enhancing charge separation. This study focuses on the role of surface passivation in DSSCs, which involves the use of TiCl4 in different concentrations (10–30 mM) over the mesoporous TiO2 layer to reduce surface recombination. Based on our research, we found that optimizing the concentration of TiCl4 to 20 mM considerably enhanced the structural, optical, electrical, and charge transport properties of the TiO2 photoanodes, leading to improved ability to capture and utilize light energy into useful power in the pertinent DSSC. A DSSC treated with 20 mM TiCl4 demonstrated an excellent power conversion efficiency (PCE) of 7.04%, about 30% higher than the untreated DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting the findings of this study will be made available upon reasonable request from the corresponding author. The data includes experimental measurements and analysis results obtained during this study.

References

  1. H. Ritchie, M. Roser, P. Rosado, Energy, Our World in Data 2022

  2. M.K. Nazeeruddin, E. Baranoff, M. Grätzel, Dye-sensitized solar cells: a brief overview. Sol. Energy. 85, 1172–1178 (2011). https://doi.org/10.1016/J.SOLENER.2011.01.018

    Article  CAS  Google Scholar 

  3. M. Dhonde, P. Bhojane, K. Sahu, V.V.S. Murty, Dye-sensitized photoelectrochemical cells in water splitting. Solar-Driven Green. Hydrogen Generation and Storage (2023). https://doi.org/10.1016/B978-0-323-99580-1.00005-4

    Article  Google Scholar 

  4. W. Liang, Y. Zhang, J. Xiong, X. Huang, Y. Xu, L. Zhang et al., Synthesis of highly dispersed TiO2 NPs/GO composites sol and its application in inverted perovskite solar cells. Org. Electron. (2022). https://doi.org/10.1016/j.orgel.2022.106616

    Article  Google Scholar 

  5. C.C. Raj, R. Prasanth, A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power Sources. 317, 120–132 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.016

    Article  CAS  Google Scholar 

  6. M. Dhonde, K. Sahu, M. Das, A. Yadav, P. Ghosh, V.V.S. Murty, Review—recent advancements in dye-sensitized solar cells; from Photoelectrode to Counter Electrode. J. Electrochem. Soc. 169, 066507 (2022). https://doi.org/10.1149/1945-7111/AC741F

    Article  CAS  Google Scholar 

  7. K. Prajapat, M. Dhonde, K. Sahu, P. Bhojane, V.V.S. Murty, P.M. Shirage, The evolution of organic materials for efficient dye-sensitized solar cells. J. Photochem. Photobiol. C (2023). https://doi.org/10.1016/j.jphotochemrev.2023.100586

    Article  Google Scholar 

  8. B. Boro, B. Gogoi, B.M. Rajbongshi, A. Ramchiary, Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew. Sustain. Energy Rev. 81, 2264–2270 (2018). https://doi.org/10.1016/j.rser.2017.06.035

    Article  CAS  Google Scholar 

  9. F. Bella, S. Galliano, G. Piana, G. Giacona, G. Viscardi, M. Grätzel et al., Boosting the efficiency of aqueous solar cells: a photoelectrochemical estimation on the effectiveness of TiCl 4 treatment. Electrochim. Acta. 302, 31–37 (2019). https://doi.org/10.1016/j.electacta.2019.01.180

    Article  CAS  Google Scholar 

  10. L.M. Nhari, R.M. El-Shishtawy, A.M. Asiri, Recent progress in organic hole transport materials for energy applications. Dyes Pigm. 193, 109465 (2021). https://doi.org/10.1016/J.DYEPIG.2021.109465

    Article  CAS  Google Scholar 

  11. V. Manthina, A.G. Agrios, Blocking layers for nanocomposite photoanodes in dye sensitized solar cells: comparison of atomic layer deposition and TiCl4 treatment. Thin Solid Films. 598, 54–59 (2016). https://doi.org/10.1016/J.TSF.2015.11.054

    Article  CAS  Google Scholar 

  12. K. Basu, D. Benetti, H. Zhao, L. Jin, F. Vetrone, A. Vomiero et al., Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO 2 photoanodes. Sci. Rep. 6, 1–10 (2016). https://doi.org/10.1038/srep23312

    Article  CAS  Google Scholar 

  13. S.S. Sahoo, S. Salunke-Gawali, C.V. Jagtap, P. Bhujbal, H.M. Pathan, Enhanced photovoltage production from Canna dyes with surface passivation of ZnO based dye sensitized solar cells. J. Sci.: Adv. Mater. Devices 7, 100513 (2022). https://doi.org/10.1016/J.JSAMD.2022.100513

    Article  CAS  Google Scholar 

  14. M. Shanmugam, R. Jacobs-Gedrim, C. Durcan, B. Yu, 2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells. Nanoscale. 5, 11275–11282 (2013). https://doi.org/10.1039/C3NR03767C

    Article  CAS  Google Scholar 

  15. S. He, L. Shang, Y. Gao, Y. Shi, F. Tan, X. Chen et al., Holistically modulating charge recombination via trisiloxane surface treatment for efficient dye-sensitized solar cells. J. Alloys Compd. 896, 162864 (2022). https://doi.org/10.1016/J.JALLCOM.2021.162864

    Article  CAS  Google Scholar 

  16. S. Jia, T. Cheng, H. Zhang, H. Wang, C. Hao, Effect of TiO2 surface treatment on electron transfer in dye-sensitized solar cells. Funct. Mater. Lett. (2022). https://doi.org/10.1142/S1793604722510122

    Article  Google Scholar 

  17. J.H. Park, J.Y. Kim, J.H. Kim, C.J. Choi, H. Kim, Y.E. Sung et al., Enhanced efficiency of dye-sensitized solar cells through TiCl4-treated, nanoporous-layer-covered TiO2 nanotube arrays. J. Power Sources. 196, 8904–8908 (2011). https://doi.org/10.1016/J.JPOWSOUR.2011.06.063

    Article  CAS  Google Scholar 

  18. M.D. Brady, L. Troian-Gautier, T.C. Motley, M.D. Turlington, G.J. Meyer, An insulating Al2O3 overlayer prevents lateral hole hopping across dye-sensitized TiO2 surfaces. ACS Appl. Mater. Interfaces. 11, 27453–27463 (2019). https://doi.org/10.1021/ACSAMI.9B08051

    Article  CAS  Google Scholar 

  19. T.K. Das, P. Ilaiyaraja, P.S.V. Mocherla, G.M. Bhalerao, C. Sudakar, Influence of surface disorder, oxygen defects and bandgap in TiO2 nanostructures on the photovoltaic properties of dye sensitized solar cells. Sol. Energy Mater. Sol. Cells. 144, 194–209 (2016). https://doi.org/10.1016/j.solmat.2015.08.036

    Article  CAS  Google Scholar 

  20. K.K. Tehare, S.T. Navale, F.J. Stadler, Z. He, H. Yang, X. Xiong et al., Enhanced DSSCs performance of TiO2 nanostructure by surface passivation layers. Mater. Res. Bull. 99, 491–495 (2018). https://doi.org/10.1016/J.MATERRESBULL.2017.11.046

    Article  CAS  Google Scholar 

  21. S. Chapi, Optical, electrical and electrochemical properties of PCL5/ITO transparent conductive films deposited by spin-coating – materials for single-layer devices. J. Sci.: Adv. Mater. Dev. 5, 322–329 (2020). https://doi.org/10.1016/j.jsamd.2020.07.005

    Article  Google Scholar 

  22. G. Gopakumar, A. Ashok, S.N. Vijayaraghavan, S.V. Nair, M. Shanmugam, MoO 3 surface passivation on TiO 2: an efficient approach to minimize loss in fill factor and maximum power of dye sensitized solar cell. Appl. Surf. Sci. 447, 554–560 (2018). https://doi.org/10.1016/j.apsusc.2018.04.013

    Article  CAS  Google Scholar 

  23. Y. Li, L. Ma, Y. Yoo, G. Wang, X. Zhang, M.J. Ko, Atomic layer deposition: a versatile method to enhance TiO 2 nanoparticles interconnection of dye-sensitized solar cell at low temperature. J. Ind. Eng. Chem. 73, 351–356 (2019). https://doi.org/10.1016/j.jiec.2019.02.006

    Article  CAS  Google Scholar 

  24. S.W. Lee, K.S. Ahn, K. Zhu, N.R. Neale, A.J. Frank, Effects of TiCl 4 treatment of nanoporous TiO 2 films on morphology, light harvesting, and charge-carrier dynamics in dye-sensitized solar cells. J. Phys. Chem. C 116, 21285–21290 (2012)

    Article  CAS  Google Scholar 

  25. Z.A. Garmaroudi, M. Abdi-Jalebi, M.R. Mohammadi, R.H. Friend, A facile low temperature route to deposit a TiO 2 scattering layer for efficient dye-sensitized solar cells. RSC Adv. 6, 70895–70901 (2016). https://doi.org/10.1039/C6RA13273A

    Article  CAS  Google Scholar 

  26. N. Motwani, P.U. Londhe, N.B. Chaure, The influence of various concentrations of ammonia on titania properties as a photo-anode for dye-sensitized solar cell. J. Mater. Sci.: Mater. Electron. 31, 20513–20526 (2020). https://doi.org/10.1007/S10854-020-04569-Z/METRICS

    Article  Google Scholar 

  27. M. Dhonde, K. Sahu, V.V.S. Murty, S.S. Nemala, P. Bhargava, Surface plasmon resonance effect of Cu nanoparticles in a dye sensitized solar cell. Electrochim. Acta. 249, 89–95 (2017). https://doi.org/10.1016/J.ELECTACTA.2017.07.187

    Article  CAS  Google Scholar 

  28. M. Dhonde, K. Sahu, V.V.S. Murty, Cu-doped TiO2 nanoparticles/graphene composites for efficient dye-sensitized solar cells. Sol. Energy. 220, 418–424 (2021). https://doi.org/10.1016/J.SOLENER.2021.03.072

    Article  CAS  Google Scholar 

  29. K. Sahu, M. Dhonde, V.V.S. Murty, Microwave-assisted hydrothermal synthesis of Cu-doped TiO2 nanoparticles for efficient dye-sensitized solar cell with improved open-circuit voltage. Int. J. Energy Res. 45, 5423–5432 (2021). https://doi.org/10.1002/ER.6169

    Article  CAS  Google Scholar 

  30. K. Sahu Dhonde, M. Dhonde, V.V.S. Murty, Novel synergistic combination of Al/N co-doped TiO2 nanoparticles for highly efficient dye-sensitized solar cells. Sol. Energy. 173, 551–557 (2018). https://doi.org/10.1016/J.SOLENER.2018.07.091

    Article  CAS  Google Scholar 

  31. J.H. Park, J.H. Kim, C.J. Choi, H. Kim, K.S. Ahn, Influence of TiCl4 post-treatment on TiO2 nanotube arrays for dye-sensitized solar cells. Mole. Cryst. Liquid Cryst. 567, 19–27 (2012). https://doi.org/10.1080/15421406.2012.702375

    Article  CAS  Google Scholar 

  32. T.S. Eom, K.H. Kim, H.W. Choi, Enhancing performance of dye-sensitized solar cells by TiCl4 treatment at different concentrations. Jpn J. Appl. Phys. 53, 06JG10 (2014). https://doi.org/10.7567/JJAP.53.06JG10/XML

    Article  CAS  Google Scholar 

  33. T.S. Eom, K.H. Kim, C.W. Bark, H.W. Choi, Influence of TiCl4post-treatment condition on TiO2electrode for enhancement photovoltaic efficiency of dye-sensitized solar cells. J. Nanosci. Nanotechnol. 14, 7705–7709 (2014). https://doi.org/10.1166/JNN.2014.9449

    Article  CAS  Google Scholar 

  34. W. Liu, D. Kou, M. Cai, L. Hu, J. Sheng, H. Tian et al., The intrinsic relation between the dynamic response and surface passivation in dye-sensitized solar cells based on different electrolytes. J. Phys. Chem. C 114, 9965–9969 (2010).

    Article  CAS  Google Scholar 

  35. A.S. Najm, S.A. Alwash, N.H. Sulaiman, M.S. Chowdhury, K. Techato, N719 dye as a sensitizer for dye-sensitized solar cells (DSSCs): a review of its functions and certain rudimentary principles. Environ. Prog Sustain. Energy. 42, e13955 (2023). https://doi.org/10.1002/EP.13955

    Article  CAS  Google Scholar 

  36. T.C. Li, M.S. Góes, F. Fabregat-Santiago, J. Bisquert, P.R. Bueno, C. Praslttichal et al., Surface passivation of nanoporous TiO2 via atomic layer deposition of ZrO2 for solid-state dye-sensitized solar cell applications. J. Phys. Chem. C 113, 18385–18390 (2009)

    Article  CAS  Google Scholar 

  37. K. Al-Attafi, A. Nattestad, J.H. Kim, Charge transport in dye-sensitized solar cells based on P25 TiO2and amorphous-free P25 photoanodes. AIP Conf. Proc. (2022). https://doi.org/10.1063/5.0112513/2829524

    Article  Google Scholar 

  38. J.H. Yang, C.W. Bark, K.H. Kim, H.W. Choi, Characteristics of the dye-sensitized solar cells using TiO2 nanotubes treated with TiCl4. Materials 42, e13955 (2014)

    Google Scholar 

  39. A. Srivastava, J.A.K. Satrughna, M.K. Tiwari, A. Kanwade, S.C. Yadav, K. Bala et al., Effect of Ti 1 – x fe x O 2 photoanodes on the performance of dye-sensitized solar cells utilizing natural betalain pigments extracted from Beta vulgaris (BV). Energy Adv. 2, 148–160 (2023)

    Article  CAS  Google Scholar 

  40. A. Vasanth, N.S. Powar, D. Krishnan, S.V. Nair, M. Shanmugam, Electrophoretic graphene oxide surface passivation on titanium dioxide for dye sensitized solar cell application. J. Sci.: Adv. Mater. Dev. 5, 316–321 (2020). https://doi.org/10.1016/J.JSAMD.2020.07.006

    Article  Google Scholar 

  41. M. Dhonde, K. Sahu, V.V.S. Murty, S.S. Nemala, P. Bhargava, S. Mallick, Enhanced photovoltaic performance of a dye sensitized solar cell with Cu/N co-doped TiO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 29, 6274–6282 (2018). https://doi.org/10.1007/S10854-018-8605-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Indian Nanoelectronics user programme (INUP-IITB) for availing partial financial support, Centre for Research in Nanotechnology & Science (CRNTS), IIT Bombay, IIT Indore (MEMS Dept), and the College of Optical Science and Engineering, Zhejiang University, China, for their lab support and fruitful discussions. The authors are also thankful to Medi-Caps University for providing a University Research Fellowship (MU/URF/001) and Seed Money Support (MU/SMPS/No.21). The financial support provided by the funding agency significantly contributed to the successful execution of this study.

Funding

This research was partially supported by the Indian Nanoelectronics user programme (INUP-IITB/13DIT006) and Medi-Caps University, University Research Fellowship (MU/URF/001) and Seed Money Support (MU/SMPS/No.21).

Author information

Authors and Affiliations

Authors

Contributions

UM: conceptualization, validation, methodology, investigation, formal analysis, and writing-original draft. KP: investigation, formal analysis, and writing-original draft. KS: formal analysis and editing. PG: formal analysis, writing-original draft and editing, and supervision. PMS: Resources, lab support, writing-original draft and editing. MD: conceptualization, funding acquisition, resources, supervision, and writing- review & editing.

Corresponding author

Correspondence to Mahesh Dhonde.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, U., Prajapat, K., Sahu, K. et al. Unveiling the impact of TiCl4 surface passivation on dye-sensitized solar cells: enhancing charge transfer kinetics and power conversion efficiency. J Mater Sci: Mater Electron 34, 2108 (2023). https://doi.org/10.1007/s10854-023-11555-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11555-8

Navigation