Skip to main content
Log in

Enhanced microwave absorbing properties of manganese zinc ferrite: polyaniline nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, manganese zinc ferrite (MZF)-polyaniline (PANI) nanocomposites were synthesized by mixing route to investigate the impact of composites on microwave absorbing properties. The starting powder of MZF is synthesized using the microwave hydrothermal method and PANI/MZF is prepared using the synthesized ferrite nanoparticles. Structural analysis was performed using the X-ray diffraction method, while morphological information was obtained through transmission electron microscopy (TEM) studies. The results of the characterization studies confirmed the existence of the spinel phase of ferrite and the polymer phase in the composite samples. The TEM images revealed that the particles are in spherical morphology with sizes in the range of 40–50 nm. The magnetic properties of the composites were measured using magnetic hysteresis loops and observed the change in magnetic saturation with the percentage of polymer incorporated in the composites. The hysteresis loops confirm the soft magnetic nature of the composites. The complex permittivity (ε′ and ε″) and permeability (µ′ and µ″) of nanocomposite samples were measured in the frequency range of 2 to 18 GHz. The permittivity and permeability parameters are found to be increasing with ferrite volume concentration. The percentage of ferrite and polymer content also had a significant impact on the magneto-dielectric and microwave absorption properties of the composite materials in the measured frequency range. The composite MZF/PANI-50 exhibited a high reflection loss of − 52.8 dB at 10 GHz with bandwidth efficiency of more than 5 GHz. These composites’ enhanced microwave absorbing capability could be beneficial in designing microwave absorption filters for electromagnetic interference applications in both X-band and Ku-band frequency regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during the analysis the current study are available from the corresponding author on reasonable request.

References

  1. P. Mathur, S. Raman, Electromagnetic Interference (EMI), measurement and reduction techniques. J. Electron. Mater. 49, 2975–2998 (2020). https://doi.org/10.1007/s11664-020-07979-1

    Article  CAS  Google Scholar 

  2. F.M. Oliveira, R. Gusmão, Recent advances in the electromagnetic interference shielding of 2D materials beyond Graphene. ACS Appl. Electron. Mater. 2(10), 3048–3071 (2020). https://doi.org/10.1021/acsaelm.0c00545

    Article  CAS  Google Scholar 

  3. K. Tian, D. Hu, Q. Wei, Q. Fu, H. Deng, Recent progress on multifunctional electromagnetic interference shielding polymer composites. J. Mater. Sci. Technol. 134, 106–131 (2023). https://doi.org/10.1016/j.jmst.2022.06.031

    Article  Google Scholar 

  4. N. Devi, S.S. Ray, Electromagnetic interference cognizance and potential of advanced polymer composites toward electromagnetic interference shielding: a review. Polym. Eng. Sci. 62(3), 591–621 (2022). https://doi.org/10.1002/pen.25876

    Article  CAS  Google Scholar 

  5. Q. Wang, J. Liu, J. Li, A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis. Int. J. Miner Metall. Mater. 30, 446–473 (2023). https://doi.org/10.1007/s12613-022-2562-9

    Article  CAS  Google Scholar 

  6. Z. Lou, Q. Wang, U.I. Kara et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14, 11 (2021). https://doi.org/10.1007/s40820-021-00750-z

    Article  CAS  Google Scholar 

  7. V. Shukla, Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 1, 1640–1671 (2019). https://doi.org/10.1039/C9NA00108E

    Article  Google Scholar 

  8. E. Mikinka, M. Siwak, Recent advances in electromagnetic interference shielding properties of carbon-fibre-reinforced polymer composites—a topical review. J. Mater. Sci: Mater. Electron. 32, 24585–24643 (2021). https://doi.org/10.1007/s10854-021-06900-8

    Article  CAS  Google Scholar 

  9. M.T. Sebastian, R. Ubic, H. Jantunen, Microwave Materials and Applications, 1st edn. (John Wiley & Sons Ltd., Hoboken, 2017)

    Book  Google Scholar 

  10. Ján. Kruželák, Andrea Kvasničáková, Klaudia Hložekováand, Ivan Hudec, Progress in polymers and polymer composites used asefficient materials for EMI shielding. Nanoscale Adv. 3, 123–172 (2021). https://doi.org/10.1039/D0NA00760A

    Article  Google Scholar 

  11. H. Xiaodi Zhou, Y. Han, C. Wang, H. Zhang, Z. Lv, Lou, Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. J. Mater. Sci. Technol. 121, 199–206 (2022). https://doi.org/10.1016/j.jmst.2022.03.002

    Article  Google Scholar 

  12. H.L. Lv, H.Q. Zhang, J. Zhao, G.B. Ji, Y.W. Du, Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 9, 1813–1822 (2016). https://doi.org/10.1007/s12274-016-1074-1

    Article  CAS  Google Scholar 

  13. L.S. Fu, J.T. Jiang, C.Y. Xu, L. Zhen, Synthesis of hexagonal Fe microflakes with excellent microwave absorption performance. Cryst. Eng. Comm. 14, 6827–6832 (2012). https://doi.org/10.1039/C2CE25836F

    Article  CAS  Google Scholar 

  14. P. Gairola, L.P. Purohit, S.P. Gairola, P. Bhardwaj, S. Kaushik, Enhanced electromagnetic absorption in ferrite and tantalum pentoxide based polypyrrole nanocomposite. Prog Nat. Sci. : Mater. Int. 29(2), 170–176 (2019). https://doi.org/10.1016/j.pnsc.2019.03.011

    Article  CAS  Google Scholar 

  15. S. Geetha, K.K. Sateesh Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials-A review. J. Appl. Polym. Sci. 112, 2073–2086 (2009). https://doi.org/10.1002/app.29812

    Article  CAS  Google Scholar 

  16. P. Neelima, T. Ramesh, P. Raju et al., Structural and microwave behaviour of Dy3+ substituted Ni0.5Zn0.5DyxFe2-xO4 ferrites. J. Mater. Sci: Mater Electron 32, 1729–1740 (2021). https://doi.org/10.1007/s10854-020-04941-z

    Article  CAS  Google Scholar 

  17. F.M. Idris, M. Hashim, I. Ismail et al., Microwave absorption characteristics of some ferrite-filled polymer composites. Adv Mat Res. 895, 298–304 (2014). https://doi.org/10.4028/www.scientific.net/amr.895.298

    Article  Google Scholar 

  18. B. Aziz, A. Shakoor, A.K. Qureshi et al., Structural, electrical, and magnetic Properties of Ferrite–Polymer Composites. J. Electron. Mater. 47, 6437–6442 (2018). https://doi.org/10.1007/s11664-018-6542-9

    Article  CAS  Google Scholar 

  19. S. Maciej Jaroszewski, A.V. Thomas, Rane, Advanced Materials for Electromagnetic Shielding Fundamentals, Properties, and Applications (John Wiley & Sons, Inc., Hoboken, NJ, 2018)

    Book  Google Scholar 

  20. B.G. Soares, G.M.O. Barra, T. Indrusiak, Conducting polymeric composites based on intrinsically conducting polymers as electromagnetic interference shielding/microwave absorbing materials-a review. J. Compos. Sci. 5(7), 173 (2021). https://doi.org/10.3390/jcs5070173

    Article  CAS  Google Scholar 

  21. K. Shahapurkar, M. Gelaw, V. Tirth et al., A comprehensive review on polymer composites as electromagnetic interference shielding materials. Polym. Polym. Compos. (2022). https://doi.org/10.1177/0967391122110212

    Article  Google Scholar 

  22. Sumita Goswami, Suman Nandy, Elvira Fortunato, Rodrigo Martins, Polyaniline and its composites engineering: a class of multifunctional smartenergy materials. J. Solid State Chem. 317, 123679 (2023). https://doi.org/10.1016/j.jssc.2022.123679

    Article  CAS  Google Scholar 

  23. A.M.A. Henaish, M.M. Ali, D.E.E. Refaay, I.A. Weinstein, O.M. Hemeda, Synthesis, electric and magnetic characterization of nickel ferrite/pani nano-composite prepared by flash auto combustion method. J. Inorg. Organomet. Polym. 31, 731–740 (2021). https://doi.org/10.1007/s10904-020-01737-w

    Article  CAS  Google Scholar 

  24. K. Praveena, K. Sadhana, H.L. Liu, M. Bououdina, Microwave absorption studies of magnetic sublattices in microwave sintered Cr3+doped SrFe12O19. J. Magn. Magn. Mater 426, 604–614 (2017). https://doi.org/10.1016/j.jmmm.2016.11.013

    Article  CAS  Google Scholar 

  25. K. Praveena, K. Sadhana, H.L. Liu, N. Maramu, G. Himanandini, Improved microwave absorption properties of TiO2 and Ni0.53Cu0.12Zn0.35Fe2O4nanocomposites potential for microwave devices. J. Alloys Compd. 681, 499–507 (2016). https://doi.org/10.1016/j.jallcom.2016.04.190

    Article  CAS  Google Scholar 

  26. K. Praveena, K. Sadhana, H.L. Liu, S.R. Murthy, Effect of Zn substitution on structural, dielectric and magnetic properties of nanocrystalline Co1−xZnxFe2O4 for potential high density recording media. J. Mater. Sci. Mater. Electron 27, 12680–11269 (2016). https://doi.org/10.1007/s10854-016-5402-8

    Article  CAS  Google Scholar 

  27. K. Praveena, M. Bououdina, M. Penchal Reddy, S. Srinath, R. Sandhya, S. Katlakunta, Structural, magnetic, and electrical properties of microwave-sintered Cr3+-Doped Sr hexaferrites. J. Electron. Mater 44, 524–531 (2015). https://doi.org/10.1007/s11664-014-3453-2

    Article  CAS  Google Scholar 

  28. T. Ramesh, B. Sravanthi, K.K. Ganta et al., Structural, magnetoelectric properties of multidoped Ni–Al ferrites for microwave circulator applications. Appl. Phys. A 128, 957 (2022). https://doi.org/10.1007/s00339-022-06103-w

    Article  CAS  Google Scholar 

  29. K. Sadhana, K. Praveena, S.R. Murthy, Magnetic properties of xNi0.53Cu0.12Zn0.35Fe1.88O 4+ (1− x) BaTiO3 nanocomposites. J. Magn. Magn. Mater. 322, 3729–3736 (2010). https://doi.org/10.1016/j.jmmm.2010.06.007

    Article  CAS  Google Scholar 

  30. T. Ramesh, R.S. Shinde, S.R. Murthy, Nanocrystalline gadolinium iron garnet for circulator applications. J. Magn. Magn. Mater. 324(22), 3668–3673 (2012). https://doi.org/10.1016/j.jmmm.2012.05.029

    Article  CAS  Google Scholar 

  31. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1974). https://doi.org/10.1109/PROC.1974.9382

    Article  Google Scholar 

  32. A.M. Nicolson, G.F. Ross, Measurement of intrinsic properties of materials by time domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970). https://doi.org/10.1109/TIM.1970.4313932

    Article  Google Scholar 

  33. S.B. Wilson, Modal analysis of the gap effect in waveguide dielectric measurements. IEEE Trans. Microwave Theory Tech. 36, 752–756 (1988). https://doi.org/10.1109/22.3581

    Article  Google Scholar 

  34. D. Micheli et al., Broadband electromagnetic absorbers using carbon nanostructure-based composites. IEEE Trans. Microwave Theory Techn 59, 2633–2646 (2011). https://doi.org/10.1109/TMTT.2011.2160198

    Article  CAS  Google Scholar 

  35. A. Davide Micheli, R. Vricella, M. Pastore, Marchetti, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nano powders. Carbon. 77, 756–774 (2014). https://doi.org/10.1016/j.carbon.2014.05.080

    Article  CAS  Google Scholar 

  36. S. Wang, Z. Tan, Y. Li, L. Sun, T. Zhang, Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochim. Acta. 441(2), 191–194 (2006). https://doi.org/10.1016/j.tca.2005.05.020

    Article  CAS  Google Scholar 

  37. K.H. Wu, C.M. Chao, C.H. Liu, T.C. Chang, Characterization and corrosion resistance of organically modified silicate–NiZn ferrite/polyaniline hybrid coatings on aluminum alloys. Corros. Sci. 49, 3001–3014 (2007). https://doi.org/10.1016/j.corsci.2007.02.008

    Article  CAS  Google Scholar 

  38. V.J. Angadi et al., Structural,electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 424, 1–11 (2017). https://doi.org/10.1016/j.jmmm.2016.10.050

    Article  CAS  Google Scholar 

  39. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading, 1978)

    Google Scholar 

  40. R. Qindeel, N.H. Alonizan, Magnetic behavior of ferrite-polymer composites for hyperthermia applications. J. Mater. Sci: Mater. Electron. 31, 19672–19679 (2020). https://doi.org/10.1007/s10854-020-04493-2

    Article  CAS  Google Scholar 

  41. A. Lekshmi Omana, R.E. Chandran, J.R. Wilson, K.C. George, N.V. Unnikrishnan, S.S. Varghese, G. George, S.M. Simon, I. Paul, Recent advances in polymer nanocomposites for electromagnetic interference shielding: a review. ACS Omega 7, 25921–25947 (2022). https://doi.org/10.1021/acsomega.2c02504

    Article  CAS  Google Scholar 

  42. N. Maruthi, M. Faisal, N. Raghavendra, Conducting polymer-based composites as efficient EMI shielding materials: a comprehensive review and future prospects. Synth. Met 272, 116664 (2021). https://doi.org/10.1016/j.synthmet.2020.116664

    Article  CAS  Google Scholar 

  43. D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, R. Wei, A. Subramania, Z. Guo, Electromagnetic interference shielding polymers and nanocomposites - a review. Polym. Rev 59, 280–337 (2019)

    Article  CAS  Google Scholar 

  44. T. Haibo Yang, Y. Ye, Lin, Microwave absorbing properties based on polyaniline/magnetic nanocomposite powders. RSC Adv. 5, 103488–103493 (2015). https://doi.org/10.1039/C5RA17576C

    Article  CAS  Google Scholar 

  45. X. Li, J. Feng, Y. Du, J. Bai, H. Fan, H. Zhang, Y. Peng, F. Li, One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. 3(10), 5535–5546 (2015). https://doi.org/10.1039/C4TA05718J

    Article  CAS  Google Scholar 

  46. M. Mishra, A.P. Singh, B.P. Singh, V.N. Singh, S.K. Dhawan, Conducting ferrofluid: a high-performance microwave shielding material. J. Mater. Chem 2(32), 13159–13168 (2014). https://doi.org/10.1039/C4TA01681E

    Article  CAS  Google Scholar 

  47. D.L. Leslie-Pelecky, R.D. Rieke, Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770–1783 (1996). https://doi.org/10.1021/cm960077f

    Article  CAS  Google Scholar 

  48. Y.J. Chen, P. Gao, R.X. Wang, C.L. Zhu, L.J. Wang, M.S. Cao, H.B. Jin, Porous Fe3O4/SnO2 core/shell nanorods: synthesis and electromagnetic properties. J. Phys. Chem. C 113, 10061–10064 (2009). https://doi.org/10.1021/jp902296z

    Article  CAS  Google Scholar 

  49. G. Viau, F. Fievet-Vincent, F. Fievet, P. Toneguzzo, F. Ravel, O. Acher, Size dependence of microwave permeability of spherical ferromagnetic particles. J. Appl. Phys. 81, 2749 (1997). https://doi.org/10.1063/1.363979

    Article  CAS  Google Scholar 

  50. F. Wen, F. Zhang, Z. Liu, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nano powders as lightweight absorbers. J. Phys. Chem. C 115, 14025–14030 (2011). https://doi.org/10.1021/jp202078p

    Article  CAS  Google Scholar 

  51. J. Anjitha Thadathil, G.R. Kavil, C.P. Kovummal, Jijil, P. Periyat, Facile synthesis of Polyindole/Ni1–xZnxFe2O4 (x = 0,0.5,1) Nanocomposites and their enhanced microwave absorption and shielding Properties. ACS Omega. 7(13), 11473–11490 (2022). https://doi.org/10.1021/acsomega.2c00824

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sadhana Katlakunta contributed to this article in a reasonable manner.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

TR synthesized the samples and took the measurements. KS helped in characterization of the present samples. KP wrote the paper.

Corresponding author

Correspondence to K. Praveena.

Ethics declarations

Conflict of interest

Authors declare that they don’t have any Conflict of interest and all the authors have read and approved the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, T., Sadhana, K. & Praveena, K. Enhanced microwave absorbing properties of manganese zinc ferrite: polyaniline nanocomposites. J Mater Sci: Mater Electron 34, 1245 (2023). https://doi.org/10.1007/s10854-023-10651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10651-z

Navigation