Skip to main content

Advertisement

Log in

MoO3/γ-In2Se3 heterostructure photoanodes for enhanced photoelectrochemical water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Developing efficient semiconductor photoanodes demonstrating strong light absorption, efficient separation of photogenerated charge carriers, and reduced charge carrier recombination rate can benefit PEC water splitting. Integrating a wide band gap semiconductor with narrow bandgap material with suitable band alignment can enhance PEC performance. Herein, we have fabricated novel MoO3/γ-In2Se3 heterostructure photoanodes using RF magnetron sputtering. The films structural, optical, morphological, and elemental composition were investigated in detail using low-angle XRD, Raman spectroscopy, XPS analysis, EDAX, and FESEM. The XRD, Raman, XPS, and EDAX results strongly confirmed the presence of desired phases of MoO3 and γ-In2Se3 layers in heterostructure without forming any impurity or alloy. FESEM micrographs revealed a uniform, dense grain structure. Optical analysis of MoO3/γ-In2Se3 done by UV–Visible spectroscopy shows increased absorption  compared  to pristine-MoO3. Conduction and valence band-edge potential values indicate that MoO3/γ-In2Se3 films are suitable for PEC hydrogen production. The PEC performance of these heterostructure photoanodes was evaluated by performing LSV, Chronoamperometry, EIS, and Mott–Schottky analysis. LSV results of MoO3/γ-In2Se3 showed a 10-fold increase in photocurrent density and attained higher photoconversion efficiency (0.5%) compared to pristine-MoO3 photoanode. EIS analysis revealed that MoO3/γ-In2Se3 photoanodes had small charge transfer resistance. Investigation of Mott Schottky results shows carrier density increases from 2.8 × 1019 cm−3 to 2.1 × 1020 cm−3 after incorporating γ-In2Se3 over MoO3. An increase in time-dependent photocurrent density reveals that MoO3/γ-In2Se3 films have effective electron-hole separation. Our finding suggests that MoO3/γ-In2Se3-based heterostructure photoanode can enhance light harvesting capacity and suppresses carrier recombination rate, eventually boosting PEC performance. Moreover, these results encourage the development of highly efficient photoelectrodes based on heterostructures for solar water-splitting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. C.G. Morales-Guio, L.A. Stern, X. Hu, Chem. Soc. Rev. 43, 6555–6569 (2014). https://doi.org/10.1039/C3CS60468C

    Article  CAS  Google Scholar 

  2. J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Norskov, Nat. Mater. 5, 909–913 (2006). https://doi.org/10.1038/nmat1752

    Article  CAS  Google Scholar 

  3. P. Xiao, W. Chen, X. Wang, Adv. Energy Mater. 5, 1500985 (2015). https://doi.org/10.1002/aenm.201500985

    Article  CAS  Google Scholar 

  4. X. Zou, Y. Zhang, Chem. Soc. Rev. 44, 5148–5180 (2015). https://doi.org/10.1039/C4CS00448E

    Article  CAS  Google Scholar 

  5. T.R. Smith, A. Wood, V.I. Birss, Appl. Catal. A Gen. 354, 1–7 (2009). https://doi.org/10.1016/j.apcata.2008.10.055

    Article  CAS  Google Scholar 

  6. A. Heinzel, B. Vogel, P. Hubner, J. Power Sources 105, 202–207 (2002). https://doi.org/10.1016/S0378-7753(01)00940-5

    Article  CAS  Google Scholar 

  7. A. Fujishima, K. Honda, Nature. 238, 37–38 (1972). https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  8. V. Aroutiounian, V. Arakelyan, G. Shahnazaryan, Solar Energy 78, 581–592 (2005). https://doi.org/10.1016/j.solener.2004.02.002

    Article  CAS  Google Scholar 

  9. Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, Y. Li, Adv. Energy Mater. 7, 1700555 (2017). https://doi.org/10.1002/aenm.201700555

    Article  CAS  Google Scholar 

  10. C. Ros, T. Andreu, J.R. Morante, J. Mater. Chem. A 8, 10625–10669 (2020). https://doi.org/10.1039/D0TA02755C

    Article  CAS  Google Scholar 

  11. J.Z. Zhang, MRS bull. 36, 48–55 (2011). https://doi.org/10.1557/mrs.2010.9

    Article  CAS  Google Scholar 

  12. Y. Qiu, Z. Pan, H. Chen, D. Ye, L. Guo, Z. Fan, S. Yang, Sci. Bull. 64, 1348–1380 (2019). https://doi.org/10.1016/j.scib.2019.07.017

    Article  CAS  Google Scholar 

  13. Z. Shen, G. Chen, Y. Yu, Q. Wang, C. Zhou, L. Hao, Y. Li, L. He, R. Mu, J. Mater. Chem. 22, 19646–19651 (2012). https://doi.org/10.1039/C2JM33432A

    Article  CAS  Google Scholar 

  14. J. Lee, S.K. Kim, Y. Sohn, J. Ind. Eng. Chem. 62, 362–374 (2018). https://doi.org/10.1016/j.jiec.2018.01.016

    Article  CAS  Google Scholar 

  15. H. He, Y. Zhou, G. Ke, X. Zhong, M. Yang, L. Bian, K. Lv, F. Donget, Electrochim. Acta 257, 181–191 (2017). https://doi.org/10.1016/j.electacta.2017.10.013

    Article  CAS  Google Scholar 

  16. Y. Chen, M. Yang, J. Du, G. Ke, X. Zhong, Y. Zhou, F. Dong, L. Bian, H. He, J. Mater. Sci. 54, 671–682 (2019). https://doi.org/10.1007/s10853-018-2863-6

    Article  CAS  Google Scholar 

  17. A.R. Fareza, F.A.A. Nugroho, F. Abdi, V. Fauzia, J. Mater. Chem. A 10, 8656–8686 (2022). https://doi.org/10.1039/D1TA10203F

    Article  CAS  Google Scholar 

  18. Y. Zhang, S.J. Park, J. Mater. Chem. A 6, 20304–20312 (2018). https://doi.org/10.1039/C8TA08385A

    Article  CAS  Google Scholar 

  19. Y. Han, M. Lim, J. Park, K. Choi, Org. Electron. 14, 3437–3443 (2013). https://doi.org/10.1016/j.orgel.2013.09.014

    Article  CAS  Google Scholar 

  20. M. Zhong, Z. Wei, X. Meng, F. Wu, J. Li, Eur. J. Inorg. Chem. 2014, 3245–3251 (2014). https://doi.org/10.1002/ejic.201402079

    Article  CAS  Google Scholar 

  21. S. Balendhran, J. Deng, J. Ou, S. Walia, J. Scott, J. Tang, K. Wang, M. Field, S. Russo, S. Zhuiykov, M. Strano, N. Medhekar, S. Sriram, M. Bhaskaran, K. Kalantar-Zadeh, Adv. Mater. 25, 108 (2013). https://doi.org/10.1002/adma.201203346

    Article  CAS  Google Scholar 

  22. A. Waghmare, V. Sharma, P. Shinde, A. Punde, P. Vairale, Y. Hase, S. Pandharkar, S. Nair, R. Aher, V. Doiphode, S. Shah, S. Rahane, B. Bade, M. Prasad, S. Rondiya, S. Jadkar, J. Solid State Electrochem. 26, 219–232 (2022). https://doi.org/10.1007/s10008-021-05054-1

    Article  CAS  Google Scholar 

  23. U. Alam, S. Kumar, D. Bahnemann, J. Koch, C. Tegenkamp, M. Muneer, Phys. Chem. Chem. Phys. 20, 4538–4545 (2018). https://doi.org/10.1039/C7CP08206A

    Article  CAS  Google Scholar 

  24. Y. Liu, P. Feng, Z. Wang, X. Jiao, F. Akhtar, Sci. Rep. 7, 1–12 (2017). https://doi.org/10.1038/s41598-017-02025-3

    Article  CAS  Google Scholar 

  25. Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J. Zhu, CrystEngComm 12, 3740–3747 (2010). https://doi.org/10.1039/C000744G

    Article  CAS  Google Scholar 

  26. A. Khan, M. Danish, U. Alam, S. Zafar, M. Muneer, ACS Omega 5, 8188–8199 (2020). https://doi.org/10.1021/acsomega.0c00446

    Article  CAS  Google Scholar 

  27. G. Kumar, J. Kumar, P. Ilanchezhiyan, M. Paulraj, H. Jeon, D. Kim, T. Kanget, J. Mater. Res. Technol. 9, 12318–12327 (2020). https://doi.org/10.1016/j.jmrt.2020.08.092

    Article  CAS  Google Scholar 

  28. V. Krishna, M. Mahesha, Sens. Actuators A Phys. 332, 113169 (2021). https://doi.org/10.1016/j.sna.2021.113169

    Article  CAS  Google Scholar 

  29. M. Tran, N. Hung, Q. Van, N. Huyen, N. Tu, H. Thanh, Opt. Mater. 121, 111587 (2021). https://doi.org/10.1016/j.optmat.2021.111587

    Article  CAS  Google Scholar 

  30. B. Cullity, S. Stock, Elements of x-ray diffraction, 3rd Edition. (Prentice Hall, New York, 2001), pp.174–177

    Google Scholar 

  31. S. Kite, D. Sathe, S. Patil, P. Bhosale, K. Garadkar, Mater. Res. Express 6, 026411 (2018). https://doi.org/10.1088/2053-1591/aaed81

    Article  CAS  Google Scholar 

  32. S. Patel, K. Dewangan, N. Gajbhiye, J. Mater. Sci.Technol. 31, 453–457 (2015). https://doi.org/10.1016/j.jmst.2014.08.013

    Article  CAS  Google Scholar 

  33. S.K.S. Patel, K. Dewangan, S.K. Srivastav, N.K. Verma, P. Jena, A.K. Singh, A. Gajbhiye N.S., Adv. Mater. Lett. 9, 585–589 (2018). https://doi.org/10.5185/amlett.2018.2022

    Article  CAS  Google Scholar 

  34. M. Dieterle, G. Weinberg, G. Mestl, Phys. Chem. Chem. Phys. 4, 812–821 (2002). https://doi.org/10.1039/B107012F

    Article  CAS  Google Scholar 

  35. R. Panda, R. Naik, N. Mishra, Phase Transit. 91, 862–871 (2018). https://doi.org/10.1080/01411594.2018.1508680

    Article  CAS  Google Scholar 

  36. J. Weszka, P. Daniel, A. Burian, A. Burian, A. Nguyen, J. Non-Cryst. Solids 265, 98–104 (2000). https://doi.org/10.1016/S0022-3093(99)00710-3

    Article  CAS  Google Scholar 

  37. K. Kambas, C. Julien, M. Jouanne, A. Likforman, M. Guittard, Physica Status Solidi B, Basic Research (Wiley, Hoboken, 1984), pp.K105–K108. https://doi.org/10.1002/pssb.2221240241

    Book  Google Scholar 

  38. Y. Fang, H. Zhang, F. Azad, S. Wang, F. Ling, S. Su, RSC Adv. 8, 29555–29561 (2018). https://doi.org/10.1039/C8RA05677C

    Article  CAS  Google Scholar 

  39. P. Dwivedi, S. Dhanekar, S. Das, Semicond. Sci. Technol. 31, 115010 (2016). https://doi.org/10.1088/0268-1242/31/11/115010

    Article  CAS  Google Scholar 

  40. S. Santhosh, M. Mathankumar, S. Chandrasekaran, A. N. Kumar, P. Murugan, B. Subramanian, Langmuir. 33, 19–33 (2017). https://doi.org/10.1021/acs.langmuir.6b02940

    Article  CAS  Google Scholar 

  41. P. Huang, Y. He, C. Cao, Z. Lu, Sci. Rep. 4, 1–7 (2014). https://doi.org/10.1038/srep07131

    Article  CAS  Google Scholar 

  42. S. Bandaru, G. Saranya, N. English, C. Yam, M. Chen, Sci. Rep. 8, 1–12 (2018). https://doi.org/10.1038/s41598-018-28522-7

    Article  CAS  Google Scholar 

  43. J. Tauc, Mater. Res. Bull. 5, 721–729 (1970). https://doi.org/10.1016/0025-5408(70)90112-1

    Article  CAS  Google Scholar 

  44. T. Das, S. Tosoni, G. Pacchioni, Comput. Mater. Sci. 163, 230–240 (2019). https://doi.org/10.1016/j.commatsci.2019.03.027

    Article  CAS  Google Scholar 

  45. Q. Meng, L. Fan, L. Zhu, N. Xu, Q. Zhang, Int. J. Quantum Chem. 118, e25681 (2018). https://doi.org/10.1002/qua.25681

    Article  CAS  Google Scholar 

  46. S. Li, Y. Yan, Y. Zhang, Y. Ou, Y. Ji, L. Liu, C. Yan, Y. Zhao, Z. Yu, Vacuum 99, 228–232 (2014). https://doi.org/10.1016/j.vacuum.2013.06.007

    Article  CAS  Google Scholar 

  47. C. Ho, Y. Chen, C. Pan, J. Appl. Phys. 115, 033501 (2014). https://doi.org/10.1063/1.4862184

    Article  CAS  Google Scholar 

  48. Y. Yan, S. Li, Y. Ou, Y. Ji, Z. Yu, L. Liu, C. Yan, Y. Zhang, Y. Zhao, Electron. Mater. Lett. 10, 1093–1101 (2014). https://doi.org/10.1007/s13391-014-4081-y

    Article  CAS  Google Scholar 

  49. J. Cao, X. Li, H. Lin, B. Xu, S. Chen, Q. Guan, Appl. Surf. Sci. 266, 294–299 (2013). https://doi.org/10.1016/j.apsusc.2012.11.172

    Article  CAS  Google Scholar 

  50. S. Yang, C. Xu, L. Yang, S. Hu, L. Zhen, RSC adv. 6, 106671–106675 (2016). https://doi.org/10.1039/C6RA21784B

    Article  CAS  Google Scholar 

  51. P. Shinde, V. Sharma, A. Punde, A. Waghmare, P. Vairale, Y. Hase, S. Pandharkar, A. Bhorde, R. Aher, S. Nair, V. Doiphode, V. Jadkar, N. Patil, S. Rondiya, M. Prasad, S. Jadkar, New J. Chem. 45, 3498–3507 (2021). https://doi.org/10.1039/D0NJ05567K

    Article  CAS  Google Scholar 

  52. J. Cen, Q. Wu, M. Liu, A. Orlov, Green Energy Environ. 2, 100–111 (2017). https://doi.org/10.1016/j.gee.2017.03.001

    Article  Google Scholar 

  53. Y. Wang, W. Tian, L. Chen, F. Cao, J. Guo, L. Li, ACS Appl. Mater. Interfaces 9, 40235–40243 (2017). https://doi.org/10.1021/acsami.7b11510

    Article  CAS  Google Scholar 

  54. K. Bhojanaa, S. Kannadhasan, N. Santhosh, P. Vijayakumar, M. Pandian, P. Ramasamy, A. Pandikumar, SN Appl. Sci. 2, 1–9 (2020). https://doi.org/10.1007/s42452-020-03555-8

    Article  CAS  Google Scholar 

  55. K. Sivula, ACS Energy Lett. 6, 2549-2551 (2021). https://doi.org/10.1021/acsenergylett.1c01245

    Article  CAS  Google Scholar 

  56. B. Bera, A. Chakraborty, T. Kar, P. Leuaa, M. Neergat, J. Phys. Chem. C 121, 20850–20856 (2017). https://doi.org/10.1021/acs.jpcc.7b06735

    Article  CAS  Google Scholar 

  57. C. Liu, Y. Qiu, F. Wang, K. Wang, Q. Liang, Z. Chen, Adv. Mater. Interfaces 4, 1700681 (2017). https://doi.org/10.1002/admi.201700681

    Article  CAS  Google Scholar 

  58. S. Bai, J. Han, K. Zhang, J. Sun, J. Guo, R. Luo, D. Li, A. Chen, ACS Sustain. Chem. Eng. 8, 4076–4084 (2020). https://doi.org/10.1021/acssuschemeng.9b06306

    Article  CAS  Google Scholar 

  59. Y. Ren, D. Feng, Z. Yan, Z. Sun, Z. Zhang, D. Xu, C. Qiao, Z. Chen, Y. Jia, S. Jun, S. Liu, Y. Yamauchi, Chem. Eng. J. 453, 39875 (2023). https://doi.org/10.1016/j.cej.2022.139875

    Article  CAS  Google Scholar 

  60. N. Kodan, A. Singh, M. Vandichel, B. Wickman, B. Mehta, Int. J. Hydrog. Energy 43, 15773–15783 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.138

    Article  CAS  Google Scholar 

  61. K. Inzani, M. Nematollahi, F. Vullum-Bruer, T. Grande, T. W. Reenaas, S. M. Selbach, Phys. Chem. Chem. Phys. 19, 9232–9245 (2017) https://doi.org/10.1039/C7CP00644F

    Article  CAS  Google Scholar 

  62. Y. Yao, M. Sun, Z. Zhang, X. Lin, B. Gao, S. Anandan, W. Liu, Int. J. Hydrog. Energy 44, 9348–9358 (2019)

    Article  CAS  Google Scholar 

  63. I. Dharmadasa, N. Kalyanaratne, R. Dharmadasa, J. Nat. Sci. Found. Sri Lanka 41, 73–80 (2013). https://doi.org/10.4038/jnsfsr.v41i2.5702

    Article  CAS  Google Scholar 

  64. O. I. Olusola (2016) Thesis (Sheffield Hallam University, Sheffield). http://shura.shu.ac.uk/id/eprint/14127

Download references

Acknowledgements

Ashish Waghmare, Yogesh Hase, Vidya Doiphode, Shruti Shah, Pratibha Shinde, Yogesh Hase, and Bharat Bade are thankful to the Ministry of New and Renewable Energy (MNRE), Government of India, for the financial support under the National Renewable Energy Fellowship (NREF) program Furthermore, Ashvini Punde is thankful to the Mahatma Jyotiba Phule Research and Training Institute (MAHAJYOTI), Government of Maharashtra, for the Mahatma Jyotiba Phule Research Fellowship (MJPRF). Swati Rahane is thankful for the research fellowship to the Chhatrapati Shahu Maharaj Research, Training and Human Development Institute (SARTHI), Government of Maharashtra. In addition, Vidhika Sharma, Mohit Prasad, and Sandesh Jadkar are grateful to Indo-French Centre for the Promotion of Advanced Research-CEFIPRA, Department of Science and Technology, New Delhi, for special financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AW: Methodology, Formal analysis, Investigation, Data curation, Writing—original draft. VS: Formal analysis, Data curation, Writing—original draft. PS: Conceptualization, Validation, Formal analysis, Investigation. SS: Methodology, Validation, Formal analysis, Investigation. AP: Methodology, Validation, Formal analysis, Investigation. YH: Methodology, Conceptualization, Validation, Formal analysis, Investigation. BB: Conceptualization, Validation, Formal analysis, Investigation.  VD: Methodology, Validation, Formal analysis, Investigation. SR: Data curation, Formal analysis, Investigation. SL: Data curation, Formal analysis, Investigation. MP: Data curation, Writing—Review, and Editing. SR: Methodology, Conceptualization, Validation, Investigation. SJ: Visualization, Writing—Review, Editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Mohit Prasad or Sandesh Jadkar.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waghmare, A., Sharma, V., Shinde, P. et al. MoO3/γ-In2Se3 heterostructure photoanodes for enhanced photoelectrochemical water splitting. J Mater Sci: Mater Electron 34, 1139 (2023). https://doi.org/10.1007/s10854-023-10526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10526-3

Navigation