Skip to main content
Log in

Light-weight and flexible Ni-doped CuO (Ni:CuO) thin films grown using the cost-effective SILAR method for future technological requests

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Products based on nanostructured flexible thin films, which are anticipated to make their way into our lifetimes in the near future. Therefore, nanostructured metal-oxide thin-film materials grown on flexible substrates are anticipated to meet emerging technological requests. In this article, we present a promising light-weight and flexible thin-film material using un-doped and Ni-doped CuO samples. Ni:CuO flexible thin-film materials were fabricated by using the cost-effective SILAR method on cellulose acetate substrates and the effects of both Ni doping and bending on the change in electrical and optoelectronic performances were investigated. It is observed that Ni doping has a great impact on the main physical properties of flexible CuO samples. The optical bandgap value of the un-doped CuO film improves with increasing Ni ratio in the growth bath. Also, sheet resistance values of the un-doped and Ni:CuO samples are a little affected due to bending of samples for bending radius ~ 20 mm. These flexible all solution-processed nanostructured CuO samples are promising candidates for use in future optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. S. Khan, S. Ali, A. Bermak, Recent developments in printing flexible and wearable sensing electronics for healthcare applications. Sensors-Basel 19(5), 1230 (2019)

    Article  CAS  Google Scholar 

  2. B. Şahin, Flexible nanostructured CuO thin film: a promising candidate for wearable real-time sweat rate monitoring devices. Sens. Actuators A 341, 113604 (2022)

    Article  Google Scholar 

  3. W. Maziarz, TiO2/SnO2 and TiO2/CuO thin film nano-heterostructures as gas sensors. Appl. Surf. Sci. 480, 361–370 (2019)

    Article  CAS  Google Scholar 

  4. R. Rai, Study of structural and electrical properties of pure and Zn-Cu doped SnO2. Adv. Mater. Lett. 1(1), 55–58 (2010)

    Article  CAS  Google Scholar 

  5. S.R. Gawali, V.L. Patil, V.G. Deonikar, S.S. Patil, D.R. Patil, P.S. Patil, J. Pant, Ce doped NiO nanoparticles as selective NO2 gas sensor. J. Phys. Chem. Solids 114, 28–35 (2018)

    Article  CAS  Google Scholar 

  6. S. Baturay, I. Candan, C. Ozaydın, Structural, optical, and electrical characterizations of Cr-doped CuO thin films. J. Mater. Sci.: Mater. Electron. 33(9), 7275–7287 (2022)

    CAS  Google Scholar 

  7. R. Bekkari, B. Jaber, L. Laânab, Effect of monovalent dopant ionic radius and concentration on the growth orientation and optical properties of the sol–gel-derived ZnO thin films. J. Mater. Sci.: Mater. Electron. 33(15), 12126–12136 (2022)

    CAS  Google Scholar 

  8. B. Sakthivel, L. Manjakkal, G. Nammalvar, High performance CuO nanorectangles-based room temperature flexible NH3 sensor. IEEE Sens. J. 17(20), 6529–6536 (2017)

    Article  CAS  Google Scholar 

  9. A.S.A. Raj, V. Biju, Nanostructured CuO: facile synthesis, optical absorption and defect dependent electrical conductivity. Mater. Sci. Semicond. Process. 68, 38–47 (2017)

    Article  CAS  Google Scholar 

  10. H. Khmissi, A.M. El Sayed, M. Shaban, Structural, morphological, optical properties and wettability of spin-coated copper oxide; influences of film thickness, Ni, and (La, Ni) co-doping. J. Mater. Sci. 51(12), 5924–5938 (2016)

    Article  CAS  Google Scholar 

  11. H. Safdar, R. Aydın, B. Şahin, Syntheses, structural evolution, electrical and optoelectronic characterization of ZnO/CuO composite films doped with transition metal Mn2+ ions. Ceram. Int. 48(18), 26678–26688 (2022)

    Article  CAS  Google Scholar 

  12. S. Dolai, R. Dey, S. Das, S. Hussain, R. Bhar, A.K. Pal, Cupric oxide (CuO) thin films prepared by reactive d.c. magnetron sputtering technique for photovoltaic application. J. Alloy. Compd. 724, 456–464 (2017)

    Article  CAS  Google Scholar 

  13. V. Dhanasekaran, T. Mahalingam, R. Chandramohan, J.-K. Rhee, J.P. Chu, Electrochemical deposition and characterization of cupric oxide thin films. Thin Solid Films 520(21), 6608–6613 (2012)

    Article  CAS  Google Scholar 

  14. J. Morales, L. Sánchez, F. Martín, J.R. Ramos-Barrado, M. Sánchez, Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films 474(1), 133–140 (2005)

    Article  CAS  Google Scholar 

  15. A. Moumen, B. Hartiti, E. Comini, Z. El Khalidi, H.M.M.M. Arachchige, S. Fadili, P. Thevenin, Preparation and characterization of nanostructured CuO thin films using spray pyrolysis technique. Superlattice Microstruct. 127, 2–10 (2019)

    Article  CAS  Google Scholar 

  16. S.K. Shinde, S.M. Mohite, A.A. Kadam, H.M. Yadav, G.S. Ghodake, K.Y. Rajpure, D.S. Lee, D.Y. Kim, Effect of deposition parameters on spray pyrolysis synthesized CuO nanoparticle thin films for higher supercapacitor performance. J. Electroanal. Chem. 850, 113433 (2019)

    Article  CAS  Google Scholar 

  17. M.R. Das, A. Mukherjee, P. Maiti, S. Das, P. Mitra, Studies on multifunctional properties of SILAR synthesized CuO thin films for enhanced supercapacitor, photocatalytic and ethanol sensing applications. J. Electron. Mater. 48(5), 2718–2730 (2019)

    Article  CAS  Google Scholar 

  18. A. Akkaya, O. Kahveci, R. Aydın, B. Şahin, Amplifying main physical characteristics of CuO films using ascorbic acid as the reducer and stabilizer agent. Appl. Phys. A 127(12), 911 (2021)

    Article  CAS  Google Scholar 

  19. D. Baran, D. Corzo, G. Blazquez, Flexible electronics: status, challenges and opportunities. Front. Electron. (2020). https://doi.org/10.3389/felec.2020.594003

    Article  Google Scholar 

  20. M.J. Cordill, P. Kreiml, C. Mitterer, Materials engineering for flexible metallic thin film applications. Materials 15(3), 926 (2022)

    Article  CAS  Google Scholar 

  21. H. Kim, S. Park, Y. Park, D. Choi, B. Yoo, C.S. Lee, Fabrication of a semi-transparent flexible humidity sensor using kinetically sprayed cupric oxide film. Sens. Actuators B 274, 331–337 (2018)

    Article  CAS  Google Scholar 

  22. Y. Khan, A. Thielens, S. Muin, J. Ting, C. Baumbauer, A.C. Arias, A new frontier of printed electronics: flexible hybrid electronics. Adv. Mater. 32(15), 1905279 (2020)

    Article  CAS  Google Scholar 

  23. N. Luo, W. Dai, C. Li, Z. Zhou, L. Lu, C.C.Y. Poon, S.-C. Chen, Y. Zhang, N. Zhao, Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv. Funct. Mater. 26(8), 1178–1187 (2016)

    Article  CAS  Google Scholar 

  24. C.M. Muiva, A.O. Juma, L.M. Lepodise, K. Maabong, D. Letsholathebe, Surfactant assisted chemical bath deposition based synthesis of 1-D nanostructured CuO thin films from alkaline baths. Mater. Sci. Semicond. Process. 67, 69–74 (2017)

    Article  CAS  Google Scholar 

  25. G. Yıldırım, E. Yücel, Variation of the key structural, morphological, and optical properties of nanostructured copper(II) oxide (CuO) thin films using surfactant CAPB as a capping agent. J. Mater. Sci.: Mater. Electron. 33(24), 19057–19070 (2022)

    Google Scholar 

  26. B. Şahin, T. Kaya, Enhanced hydration detection properties of nanostructured CuO films by annealing. Microelectron. Eng. 164, 88–92 (2016)

    Article  Google Scholar 

  27. J.-W. Ha, J. Oh, H. Choi, H. Ryu, W.-J. Lee, J.-S. Bae, Photoelectrochemical properties of Ni-doped CuO nanorods grown using the modified chemical bath deposition method. J. Ind. Eng. Chem. 58, 38–44 (2018)

    Article  CAS  Google Scholar 

  28. J. Oh, H. Ryu, W.-J. Lee, J.-S. Bae, Improved photostability of a CuO photoelectrode with Ni-doped seed layer. Ceram. Int. 44(1), 89–95 (2018)

    Article  CAS  Google Scholar 

  29. J. Uddin, M. Sharmin, M.N. Hasan, J. Podder, Influence of Ni doping on the morphological, structural, optical and electrical properties of CuO thin films deposited via a spray pyrolysis. Opt. Mater. 119, 111388 (2021)

    Article  CAS  Google Scholar 

  30. D. Son, S. Cho, J. Nam, H. Lee, M. Kim, X-ray-based spectroscopic techniques for characterization of polymer nanocomposite materials at a molecular level. Polymers 12(5), 1053 (2020)

    Article  CAS  Google Scholar 

  31. X. Ji, Relative effect of electronegativity on formation of high entropy alloys. Int. J. Cast Met. Res. 28(4), 229–233 (2015)

    Article  CAS  Google Scholar 

  32. V. Dhanasekaran, T. Mahalingam, Surface modifications and optical variations of (−111) lattice oriented CuO nanofilms for solar energy applications. Mater. Res. Bull. 48(9), 3585–3593 (2013)

    Article  CAS  Google Scholar 

  33. S. Visalakshi, R. Kannan, S. Valanarasu, A. Kathalingam, S. Rajashabala, Studies on optical and electrical properties of SILAR-deposited CuO thin films. Mater. Res. Innov. 21(3), 146–151 (2017)

    Article  CAS  Google Scholar 

  34. M. Ayachi, F. Ayad, A. Djelloul, L. Benharrat, S. Anas, Synthesis and characterization of Ni-doped ZnO thin films prepared by sol-gel spin-coating method. Semiconductors 55(5), 482–490 (2021)

    Article  CAS  Google Scholar 

  35. A. Abdel-Galil, N.L. Moussa, I.S. Yahia, Study on spray deposited Ni-doped CuO nanostructured thin films: microstructural and optical behavior. J. Mater. Sci.: Mater. Electron. 33(8), 4984–4999 (2022)

    CAS  Google Scholar 

  36. R.K. Pandey, K. Ghosh, S. Mishra, J.P. Bange, P.K. Bajpai, D.K. Gautam, Effect of film thickness on structural and optical properties of sol-gel spin coated aluminum doped zinc oxide (Al:ZnO) thin films. Mater. Res. Express 5(8), 086408 (2018)

    Article  Google Scholar 

  37. D. Raoufi, F. Hosseinpanahi, The effect of film thickness on surface morphology of ITO thin films. J. Theor. Appl. Phys. 7(1), 21 (2013)

    Article  Google Scholar 

  38. B. Karthikeyan, Raman spectral probed electron–phonon coupling and phonon lifetime properties of Ni-doped CuO nanoparticles. Appl. Phys. A 127(3), 205 (2021)

    Article  CAS  Google Scholar 

  39. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method. Mater. Sci. Semicond. Process. 17, 110–118 (2014)

    Article  CAS  Google Scholar 

  40. M.A. Asghar, A. Ali, A. Haider, M. Zaheer, T. Nisar, V. Wagner, Z. Akhter, Electrochemically deposited amorphous cobalt–nickel-doped copper oxide as an efficient electrocatalyst toward water oxidation reaction. ACS Omega 6(30), 19419–19426 (2021)

    Article  CAS  Google Scholar 

  41. S.P. Kamble, V.D. Mote, Optical and room-temperature ferromagnetic properties of Ni-doped CuO nanocrystals prepared via auto-combustion method. J. Mater. Sci.: Mater. Electron. 32(5), 5309–5315 (2021)

    CAS  Google Scholar 

  42. P. Arunachalam, S. Nagarani, S. Prasad, M.S. AlSalhi, A.M. Al-Mayouf, A.M. Moydeen, S. Ganapathy, Facile coprecipitation synthesis of nickel doped copper oxide nanocomposite as electrocatalyst for methanol electrooxidation in alkaline solution. Mater. Res. Express 5(1), 015512 (2018)

    Article  Google Scholar 

  43. D. Wang, R. Xu, X. Wang, Y. Li, NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnology 17(4), 979–983 (2006)

    Article  CAS  Google Scholar 

  44. A. Sreenavya, T. Baskaran, V. Ganesh, D. Sharma, N. Kulal, A. Sakthivel, Framework of ruthenium-containing nickel hydrotalcite-type material: preparation, characterisation, and its catalytic application. RSC Adv. 8(44), 25248–25257 (2018)

    Article  CAS  Google Scholar 

  45. A. Taşdemir, R. Aydin, A. Akkaya, N. Akman, Y. Altınay, H. Çetin, B. Şahin, A. Uzun, E. Ayyıldız, A green approach for the preparation of nanostructured zinc oxide: characterization and promising antibacterial behaviour. Ceram. Int. 47(14), 19362–19373 (2021)

    Article  Google Scholar 

  46. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen, 98–100 (1918)

  47. M. Chandrasekar, M. Subash, S. Logambal, G. Udhayakumar, R. Uthrakumar, C. Inmozhi, W.A. Al-Onazi, A.M. Al-Mohaimeed, T.-W. Chen, K. Kanimozhi, Synthesis and characterization studies of pure and Ni doped CuO nanoparticles by hydrothermal method. J. King Saud Univ. Sci. 34(3), 101831 (2022)

    Article  Google Scholar 

  48. A.M. Alsaad, A.A. Ahmad, Q.M. Al-Bataineh, A.A. Bani-Salameh, H.S. Abdullah, I.A. Qattan, Z.M. Albataineh, A.D. Telfah, Optical, structural, and crystal defects characterizations of dip synthesized (Fe-Ni) co-doped ZnO thin films. Materials 13(7), 1737 (2020)

    Article  CAS  Google Scholar 

  49. I. Muniyandi, G.K. Mani, P. Shankar, J.B.B. Rayappan, Effect of nickel doping on structural, optical, electrical and ethanol sensing properties of spray deposited nanostructured ZnO thin films. Ceram Int 40(6), 7993–8001 (2014)

    Article  CAS  Google Scholar 

  50. L.M. Dwivedi, N. Shukla, K. Baranwal, S. Gupta, S. Siddique, V. Singh, Gum acacia modified Ni doped CuO nanoparticles: an excellent antibacterial material. J. Clust. Sci. 32(1), 209–219 (2021)

    Article  CAS  Google Scholar 

  51. R.N. Mariammal, K. Ramachandran, G. Kalaiselvan, S. Arumugam, B. Renganathan, D. Sastikumar, Effect of magnetism on the ethanol sensitivity of undoped and Mn-doped CuO nanoflakes. Appl. Surf. Sci. 270, 545–552 (2013)

    Article  CAS  Google Scholar 

  52. K. Borgohain, J.B. Singh, M.V. Rama Rao, T. Shripathi, S. Mahamuni, Quantum size effects in CuO nanoparticles. Phys. Rev. B 61(16), 11093–11096 (2000)

    Article  CAS  Google Scholar 

  53. G. Kliche, Z.V. Popovic, Far-infrared spectroscopic investigations on CuO. Phys. Rev. B 42(16), 10060–10066 (1990)

    Article  CAS  Google Scholar 

  54. L.-J. Chen, G.-S. Li, L.-P. Li, CuO nanocrystals in thermal decomposition of ammonium perchlorate: stabilization, structural characterization and catalytic activities. J. Therm. Anal. Calorim. 91(2), 581–587 (2008)

    Article  CAS  Google Scholar 

  55. A. Kumar, M. Kumar, P. Chandra Sati, M.K. Srivastava, S. Ghosh, S. Kumar, Structural, magnetic and optical properties of diluted magnetic semiconductor (DMS) phase of Ni modified CuO nanoparticles. Curr. Appl. Phys. 32, 24–35 (2021)

    Article  Google Scholar 

  56. P. Fei, L. Liao, B. Cheng, J. Song, Quantitative analysis of cellulose acetate with a high degree of substitution by FTIR and its application. Anal. Methods-UK 9(43), 6194–6201 (2017)

    Article  CAS  Google Scholar 

  57. D. Tristantini, A. Yunan, Advanced characterization of microbeads replacement from cellulose acetate based on empty fruit bunches and dried jackfruit leaves. E3S Web Conf. 67, 04045 (2018)

    Article  CAS  Google Scholar 

  58. G. Richner, G. Puxty, Assessing the chemical speciation during CO2 absorption by aqueous amines using in situ FTIR. Ind. Eng. Chem. Res. 51(44), 14317–14324 (2012)

    Article  CAS  Google Scholar 

  59. B. Şahin, R. Aydin, H. Cetin, Tuning the morphological, structural, optical and dielectric properties of hausmannite (Mn3O4) films by doping heavy metal lead. Superlattice Microstruct. 143, 106546 (2020)

    Article  Google Scholar 

  60. J.I. Pankove, Optical Processes in Semiconductors (Dover Publications, Mineola, 2012)

    Google Scholar 

  61. M.H. Babu, J. Podder, B.C. Dev, M. Sharmin, p to n-type transition with wide blue shift optical band gap of spray synthesized Cd doped CuO thin films for optoelectronic device applications. Surf. Interfaces 19, 100459 (2020)

    Article  CAS  Google Scholar 

  62. N. Thakur, Anu, K. Kumar, Effect of (Ag, Co) co-doping on the structural and antibacterial efficiency of CuO nanoparticles: a rapid microwave assisted method. J. Environ. Chem. Eng. 8(4), 104011 (2020)

    Article  CAS  Google Scholar 

  63. O. Daoudi, Y. Qachaou, A. Raidou, K. Nouneh, M. Lharch, M. Fahoume, Study of the physical properties of CuO thin films grown by modified SILAR method for solar cells applications. Superlattice Microstruct. 127, 93–99 (2019)

    Article  CAS  Google Scholar 

  64. H. Siddiqui, M.R. Parra, M.S. Qureshi, M.M. Malik, F.Z. Haque, Studies of structural, optical, and electrical properties associated with defects in sodium-doped copper oxide (CuO/Na) nanostructures. J. Mater. Sci. 53(12), 8826–8843 (2018)

    Article  CAS  Google Scholar 

  65. K. Varunkumar, R. Hussain, G. Hegde, A.S. Ethiraj, Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and morphological studies. Mater. Sci. Semicond. Process. 66, 149–156 (2017)

    Article  CAS  Google Scholar 

  66. S. Al-Amri, M. Shahnawaze Ansari, S. Rafique, M. Aldhahri, S. Rahimuddin, A. Azam, A. Memic, Ni doped CuO nanoparticles: structural and optical characterizations. Curr. Nanosci. 11(2), 191–197 (2015)

    Article  CAS  Google Scholar 

  67. W. Yin, J. Yang, K. Zhao, A. Cui, J. Zhou, W. Tian, W. Li, Z. Hu, J. Chu, High responsivity and external quantum efficiency photodetectors based on solution-processed Ni-doped CuO films. ACS Appl. Mater. Interfaces 12(10), 11797–11805 (2020)

    Article  CAS  Google Scholar 

  68. H. El Aakib, J.F. Pierson, M. Chaik, H. Ait Dads, C. Samba Vall, A. Narjis, A. Outzourhit, Nickel doped copper oxide thin films prepared by radiofrequency reactive sputtering: study of the impact of nickel content on the structural, optical and electrical properties. Spectrosc. Lett. 54(7), 487–494 (2021)

    Article  Google Scholar 

  69. F. Mukhtar, T. Munawar, M.S. Nadeem, M. Hasan, F. Hussain, M.A. Nawaz, F. Iqbal, Multi metal oxide NiO-Fe2O3-CdO nanocomposite-synthesis, photocatalytic and antibacterial properties. Appl. Phys. A 126(8), 588 (2020)

    Article  CAS  Google Scholar 

  70. D.-C. Tsai, Z.-C. Chang, B.-H. Kuo, Y.-H. Wang, E.-C. Chen, F.-S. Shieu, Thickness dependence of the structural, electrical, and optical properties of amorphous indium zinc oxide thin films. J. Alloy. Compd. 743, 603–609 (2018)

    Article  CAS  Google Scholar 

  71. A. Mhamdi, B. Ouni, A. Amlouk, K. Boubaker, M. Amlouk, Study of nickel doping effects on structural, electrical and optical properties of sprayed ZnO semiconductor layers. J. Alloy. Compd. 582, 810–822 (2014)

    Article  CAS  Google Scholar 

  72. D.K. Schroder, Semiconductor Material And Device Characterization (Wiley, New York, 2006)

    Google Scholar 

  73. S. Baturay, A. Tombak, D. Kaya, Y.S. Ocak, M. Tokus, M. Aydemir, T. Kilicoglu, Modification of electrical and optical properties of CuO thin films by Ni doping. J. Sol-Gel Sci. Technol. 78(2), 422–429 (2016)

    Article  CAS  Google Scholar 

  74. J.S. Shaikh, R.C. Pawar, R.S. Devan, Y.R. Ma, P.P. Salvi, S.S. Kolekar, P.S. Patil, Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid. Electrochim. Acta 56(5), 2127–2134 (2011)

    Article  CAS  Google Scholar 

  75. A. Ogwu, T. Darma, E. Bouquerel, Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering. J. Achiev Mater. Manuf. Eng. 24(1), 172–177 (2007)

    Google Scholar 

  76. Y. Shen, M. Guo, X. Xia, G. Shao, Role of materials chemistry on the electrical/electronic properties of CuO thin films. Acta Mater. 85, 122–131 (2015)

    Article  CAS  Google Scholar 

  77. R. Nitta, R. Taguchi, Y. Kubota, T. Kishi, A. Shishido, N. Matsushita, Novel bending sensor based on a solution-processed Cu2O film with high resolution covering a wide curvature range. ACS Omega 6(48), 32647–32654 (2021)

    Article  CAS  Google Scholar 

  78. Y. Sun, S.E. Thompson, T. Nishida, Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 101(10), 104503 (2007)

    Article  Google Scholar 

  79. P. Kleimann, B. Semmache, M. Le Berre, D. Barbier, Stress-dependent hole effective masses and piezoresistive properties of p-type monocrystalline and polycrystalline silicon. Phys. Rev. B 57(15), 8966–8971 (1998)

    Article  CAS  Google Scholar 

  80. S. Dinç, B. Şahin, T. Kaya, Improved sensing response of nanostructured CuO thin films towards sweat rate monitoring: effect of Cr doping. Mater. Sci. Semicond. Process. 105, 104698 (2020)

    Article  Google Scholar 

  81. R. Bosigo, L.M. Lepodise, G. Chimowa, C. Muiva, Enhanced ethanol sensing response of nanostructured Ce-doped CuO thin films. Mater. Chem. Phys. 280, 125841 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by RA, AA and BŞ. The first draft of the manuscript was written by BŞ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Akkaya.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydın, R., Akkaya, A. & Şahin, B. Light-weight and flexible Ni-doped CuO (Ni:CuO) thin films grown using the cost-effective SILAR method for future technological requests. J Mater Sci: Mater Electron 33, 23806–23820 (2022). https://doi.org/10.1007/s10854-022-09139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09139-z

Navigation