Skip to main content
Log in

Effects of immersion silver (ImAg) and immersion tin (ImSn) surface finish on the microstructure and joint strength of Sn-3.0Ag-0.5Cu solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This manuscript details the investigation into the influences of immersion silver (ImAg) and immersion tin (ImSn) surface finish reflowed with the Sn-3.0Ag-0.5Cu (SAC305) solder via microstructure observation, phase and thermal analysis, and the high-speed shear test. Synchrotron radiography and synchrotron micro-XRF were utilised to elucidate the primary Cu6Sn5 intermetallic compound formation and elemental mapping distributions, respectively. The ImSn surface finish plated on the Cu substrate resulted in smaller-sized and more numerous primary Cu6Sn5 intermetallics in the solder joint, compared to SAC305/ImAg which has higher Ag and Cu contents. The mechanical properties of SAC305/ImSn resulted in a higher solder joint strength relative to that of SAC305/ImAg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Siewiorek, A. Kudyba, N. Sobczak, M. Homa, Z. Huber, Z. Adamek, J. Wojewoda-Budka, J. Mater. Eng. Perform. 22, 2247 (2013). https://doi.org/10.1007/s11665-013-0492-4

    Article  CAS  Google Scholar 

  2. A.T. Tan, A.W. Tan, F. Yusof, Sci. Technol. Adv. Mater. 16, 033503 (2015)

    Article  Google Scholar 

  3. M.I.I. Ramli, M.A.A. Mohd-Salleh, H. Yasuda, J. Chaiprapa, K. Nogita, Mater. Des. 186, 108281 (2020). https://doi.org/10.1016/j.matdes.2019.108281

    Article  CAS  Google Scholar 

  4. J.W. Yoon, S.B. Jung, J. Alloys Compd. 448, 177–184 (2008). https://doi.org/10.1016/j.jallcom.2006.10.052

    Article  CAS  Google Scholar 

  5. M.A.R. Adawiyah, O.S. Azlina, J. Alloys Compd. 740, 958–966 (2018). https://doi.org/10.1016/j.jallcom.2018.01.054

    Article  CAS  Google Scholar 

  6. M.A.R. Adawiyah, O.S. Azlina, Procedia Eng. 184, 604–610 (2017). https://doi.org/10.1016/j.proeng.2017.04.157

    Article  CAS  Google Scholar 

  7. M. Arra, D. Shangguan, D. Xie, J. Sundelin, T. Lepisto, E. Ristolainen, J. Electon. Mater. 33, 283 (2004)

    Article  Google Scholar 

  8. W. Wang, A. Choubey, M.H. Azarian, M. Pecht, J. Electon. Mater. 38, 1234–1238 (2009)

    Article  CAS  Google Scholar 

  9. M.N. Collins, R. Coyle, Solder. Surf. Mt. Technol. 24, 240–248 (2012). https://doi.org/10.1108/09540911211262520

    Article  CAS  Google Scholar 

  10. C.E. Ho, S.P. Yang, P.T. Lee, C.Y. Lee, C.C. Chen, T.T. Kuo, J. Mater. Res. Technol. 11, 1895–1890 (2021). https://doi.org/10.1016/j.jmrt.2021.02.029

    Article  CAS  Google Scholar 

  11. J.W. Yoon, S.B. Jung, J. Alloys Compd. 458, 200–207 (2008). https://doi.org/10.1016/j.jallcom.2007.04.014

    Article  CAS  Google Scholar 

  12. Y. Zheng, C. Hillman, P. McCluskey, in 52nd Electronic components and technology conference IEEE (2002)

  13. A. Ourdjini, M.A. Azmah Hanim, I. Siti Rabiatull Aisha, Y.T Chin. 33rd IEEE (2008)

  14. T.H. Chuang, S.F. Yen, H.M. Wu, J. Electron. Mater. 35, 2 (2006). https://doi.org/10.1007/BF02692451

    Article  Google Scholar 

  15. M.A.A. Mohd Salleh, S.D. McDonald, H. Yasuda, A. Sugiyama, K. Nogita, Scr. Mater. 100, 17–20 (2015). https://doi.org/10.1016/j.scriptamat.2014.11.039

    Article  CAS  Google Scholar 

  16. M.A.A. Mohd Salleh, C.M. Goulay, J.W. Xian, S.A. Belyakov, H. Yasuda, S.D. McDonald, K. Nogita, Sci. Rep. 7, 1–11 (2017). https://doi.org/10.1038/srep40010

    Article  CAS  Google Scholar 

  17. JEDEC Solid State Technology Association JEDEC Standard JESD22-B117A (2006)

  18. L. Qu, H. Ma, H. Zhao, N. Zhao, A. Kunwar, M. Huang, 14th International Conference on Electronic Packaging Technology (2013)

  19. Z.H. Li, Y. Tang, Q.W. Guo, G.Y. Li, J. Alloys Compd. 818, 152893 (2020). https://doi.org/10.1016/j.jallcom.2019.152893

    Article  CAS  Google Scholar 

  20. M.B. Kelly, T. Maity, A.R. Nazmus Sakib, D.R. Frear, N. Chawla, J. Electron. Mater. 49, 3251–3258 (2020). https://doi.org/10.1007/s11664-020-08013-0

    Article  CAS  Google Scholar 

  21. S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K.J. Puttlitz, J. Miner. Met. Mater. Soc. 55, 14–20 (2003)

    Article  Google Scholar 

  22. S.K. Kang, P. Lauro, D.Y. Shih, D.W. Henderson, K.J. Puttlitz, J. Res. Dev. 49, 607 (2005)

    CAS  Google Scholar 

  23. Q. Zhou, M. Huang, N. Zhao, Z. Zhang, 13th International Conference on Electronic Packaging Technology and High-Density Packaging (ICEPT-HDP), (2012). https://doi.org/10.1109/ICEPT-HDP.2012.6474868

  24. H. Okamoto, T.B. Massalski, ASM International, Materials Park (1990). https://doi.org/10.31399/asm.hb.v03.a0006247

  25. W. Peng, E. Monlevade, M.E. Marques, Microelectron. Reliab. 47, 2161–2168 (2007). https://doi.org/10.1016/j.microrel.2006.12.006

    Article  CAS  Google Scholar 

  26. T. Xu, Y. Hu, Y. Li, X. Jiang, J. Mater. Sci. Mater. Electron. 28, 18515 (2017). https://doi.org/10.1007/s10854-017-7799-0

    Article  CAS  Google Scholar 

  27. M. Yang, H. Ji, S. Wang, Y.H. Ko, C.W. Lee, J. Wu, M. Li, J. Alloys Compd. 679, 18–25 (2016)

    Article  CAS  Google Scholar 

  28. S.F.N. Muhd Amli, M.A.A. Mohd Salleh, M.I.I. Ramli, N.R. Abdul Razak, H. Yasuda, J. Chaiprapa, K. Nogita, J. Electron. Mater. 50, 855–868 (2021). https://doi.org/10.1007/s11664-020-08641-6

    Article  CAS  Google Scholar 

  29. Y. Liu, J. Meerwijk, L. Luo, L. Zhang, F. Sun, C.A. Yuan, G. Zhang, J. Mater. Sci. Mater. Electron. 25, 11 (2014). https://doi.org/10.1007/s10854-014-2257-8

    Article  CAS  Google Scholar 

  30. C.W.N. Wayne, K. Sweatman, T. Akaiwa, T. Nishimura, M. Sato, C. Gourlay, S. Belyakov, 18th Electronics Packaging Technology Conference (EPTC) (2016). https://doi.org/10.1109/EPTC.2016.7861510

  31. K. Nogita, C.M. Gourlay, T. Nishimura, Miner. Met. Mater. Soc. (JOM) 61, 11–17 (2009)

    Google Scholar 

  32. S.F.N. Muhd Amli, M.A.A. Mohd Salleh, M.I.I. Ramli, H. Yasuda, J. Chaiprapa, F. Somidin, Z. Shayfull, K. Nogita, J. Electron. Mater. 50, 710–722 (2020). https://doi.org/10.1007/s11664-020-08428-9

    Article  CAS  Google Scholar 

  33. A.A. El-Daly, A.M. El-Taher, S. Gouda, J. Alloys Compd. 627, 268 (2015). https://doi.org/10.1016/j.jallcom.2014.12.034

    Article  CAS  Google Scholar 

  34. M.G. Cho, S.-K. Seo, H.M. Lee, Mater. Trans. 50, 2291 (2009). https://doi.org/10.2320/matertrans.M2009127

    Article  CAS  Google Scholar 

  35. K.S. Kim, S.H. Huh, K. Suganuma, J. Alloys Compd. 352, 1–2 (2003). https://doi.org/10.1016/S0925-8388(02)01166-0

    Article  Google Scholar 

  36. J.M. Kim, M.H. Jeong, S. Yoo, C.W. Lee, Y.B. Park, Microelectron. Eng. 89, 55–57 (2012). https://doi.org/10.1016/j.mee.2011.03.148

    Article  CAS  Google Scholar 

  37. J.W. Kim, Y.C. Lee, S.S. Ha, S.B. Jung, J. Mater. Sci.: Mater. Electron. 20, 17–24 (2009)

    CAS  Google Scholar 

  38. H. Tskukamoto, T. Nishimura, S. Suenaga, K. Nogita, J. Mater. Sci. Eng. B 171, 31–34 (2010)

    Article  Google Scholar 

  39. H. Tskukamoto, T. Nishimura, S. Suenaga, S.D. McDonald, K.W. Sweatman, K. Nogita, Microelectron. Reliab. 51, 855–868 (2011)

    Google Scholar 

  40. M.A.A. Mohd Salleh, S.D. McDonald, K. Nogita, J. Mater. Process. Technol. 242, 235–245 (2017). https://doi.org/10.1016/j.jmatprotec.2016.11.031

    Article  CAS  Google Scholar 

  41. M.A.A. Mohd Salleh, S.D. McDonald, C.M. Gourlay, H. Yasuda, K. Nogita, Mater. Des. 108, 418–428 (2016). https://doi.org/10.1016/j.matdes.2016.06.121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Universiti Malaysia Perlis (UniMAP) and Nihon Superior Co. Ltd. collaboration research project and the fundamental research grant scheme (FRGS) FRGS/1/2020/TK0/UNIMAP/02/48 (9003-00791) from the Ministry of Higher Education, Malaysia for the financial support throughout the research project. The in-situ synchrotron radiation experiments were performed at the Japan Synchrotron Radiation Research Institute (JASRI) at the BL20XU beamline of the SPring-8 Synchrotron, under proposal No: 2017B1519 and 2019B1618 which is also supported by Grant-in-Aid for Scientific Research (S) (No. 17H06155), JSPS, Japan. The μ-XRF trace element mapping technique was performed at the Synchrotron Light Research Institute (SLRI), Thailand, under project ID: 6031. High-speed shear test was conducted at Nihon Superior R&D, Osaka, Japan.

Funding

This work has supported by the Universiti Malaysia Perlis (UniMAP) and Nihon Superior Co. Ltd. collaboration research project and the fundamental research grant scheme (FRGS) FRGS/1/2020/TK0/UNIMAP/02/48 (9003-00791) from the Ministry of Higher Education, Malaysia. The in-situ synchrotron radiation experiments were performed at the Japan Synchrotron Radiation Research Institute (JASRI) at the BL20XU beamline of the SPring-8 Synchrotron, under proposal No: 2017B1519 and 2019B1618 which is also supported by Grant-in-Aid for Scientific Research (S) (No. 17H06155), JSPS, Japan.

Author information

Authors and Affiliations

Authors

Contributions

SFMA: Conceptualization, Writing-original draft, Formal analysis, Investigation, Methodology, Visualization, Validation. MAAMS: Supervision, Investigation, Validation, Writing- review and editing. MIIR: Visualization, Investigation. MSAA: Supervision. HY: Investigation. JC: Investigation. KN: Writing- review and editing.

Corresponding author

Correspondence to M. A. A. Mohd Salleh.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amli, S.F.M., Salleh, M.A.A.M., Ramli, M.I.I. et al. Effects of immersion silver (ImAg) and immersion tin (ImSn) surface finish on the microstructure and joint strength of Sn-3.0Ag-0.5Cu solder. J Mater Sci: Mater Electron 33, 14249–14263 (2022). https://doi.org/10.1007/s10854-022-08353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08353-z

Navigation