Skip to main content
Log in

Molecular optical filtering in perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the applicability of a vacuum-deposited layer of porphyrazine [series] pigment, the tris(1,2,5-thiadiazolo)subporphyrazinatoboron(III) chloride (SubPzS3), as optical filter for inverted perovskite solar cells. Thin films formed from this material are characterized by a narrow, high-intensity absorption band in the visible range, with a maximum at ~ 545 nm. The operation stability of the device was assessed by the dynamic J–V characteristics. The efficiency of solar cells equipped with such optical filter is lower due to a decrease in the total number of photons absorbed by the perovskite layer. However, their stability to photolysis by the impact of sunlight is higher and, what is more, the filtered radiation has a stabilizing effect on the performance of cells under long-term illumination. Transformation of the perovskite material in the solar cells is determined by a trade-off between destructive and healing photons that penetrate into the perovskite photoabsorber depending on whether or not it has a filtering layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data obtained and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 57). Prog. Photovoltaics Res. Appl. 29, 3–15 (2020). https://doi.org/10.1002/pip.3371

    Article  Google Scholar 

  2. V.V. Travkin, P.A. Yunin, A.N. Fedoseev, A.I. Okhapkin, Yu.I. Sachkov, G.L. Pakhomov, Wavelength-selective degradation of perovskite-based solar cells. Solid State Sci. 99, 106051 (2020). https://doi.org/10.1016/j.solidstatesciences.2019.106051

    Article  CAS  Google Scholar 

  3. R. Wang, M. Mujahid, Y. Duan, Z.-K. Wang, J. Xue, Y. Yang, A review of perovskites solar cell stability. Adv. Funct. Mater. 29(47), 1808843 (2019). https://doi.org/10.1002/adfm.201808843

    Article  CAS  Google Scholar 

  4. S. Mazumdar, Y. Zhao, X. Zhang, Stability of perovskite solar cells: degradation mechanisms and remedies. Front. Electron. 2, 712–785 (2021). https://doi.org/10.3389/felec.2021.712785

    Article  Google Scholar 

  5. E.J. Juarez-Perez, L.K. Ono, M. Maeda, Y. Jiang, Z. Hawash, Y. Qi, Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A. 6, 9604–9612 (2018). https://doi.org/10.1039/c8ta03501f

    Article  CAS  Google Scholar 

  6. D.S. Gets, EYu. Tiguntseva, A.S. Berestennikov, T.G. Lyashenko, A.P. Pushkarev, S.V. Makarov, A.A. Zakhidov, Photoinduced migration of ions in optically resonant perovskite nanoparticles. JETP Lett. 107, 742–748 (2018). https://doi.org/10.1134/S002136401812007X

    Article  CAS  Google Scholar 

  7. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J

    Article  CAS  Google Scholar 

  8. T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang, L. Luo, J. Xiao, Z. Ku, Y. Peng, F. Huang et al., Novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 10, 2509–2515 (2017). https://doi.org/10.1039/C7EE02634J

    Article  CAS  Google Scholar 

  9. Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz, H.J. Snaith, Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy. 2, 17135 (2017). https://doi.org/10.1038/nenergy.2017.135

    Article  CAS  Google Scholar 

  10. Y. Sun, J. Peng, Y. Chen, Y. Yao, Z. Liang, Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2. Additive. Sci. Rep. 7, 46193 (2017). https://doi.org/10.1038/srep46193

    Article  CAS  Google Scholar 

  11. D.-K. Lee, N.-G. Park, Materials and methods for high-efficiency perovskite solar modules. Sol. RRL (2021). https://doi.org/10.1002/solr.202100455

    Article  Google Scholar 

  12. Z. Wang, D.P. McMeekin, N. Sakai, S. van Reenen, K. Wojciechowski, J.B. Patel, M.B. Johnston, H.J. Snaith, Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers. Adv. Mater. 29, 1604186 (2017). https://doi.org/10.1002/adma.201604186

    Article  CAS  Google Scholar 

  13. W. Xiao, J. Yang, S. Xiong, D. Li, Y. Li, J. Tang, C. Duan, Q. Bao, Exploring red, green, and blue light-activated degradation of perovskite films and solar cells for near space applications. Sol. RRL 4, 1900394 (2020). https://doi.org/10.1002/solr.201900394

    Article  CAS  Google Scholar 

  14. A. Farooq, M.R. Khan, T. Abzieher, A. Voigt, D.C. Lupascu, U. Lemmer, B.S. Richards, U.W. Paetzold, Photodegradation of triple-cation perovskite solar cells: the role of spectrum and bias conditions. ACS Appl. Energy Mater. 4, 3083–3092 (2021). https://doi.org/10.1021/acsaem.0c02813

    Article  CAS  Google Scholar 

  15. G.A. Al-Dainy, S.E. Bourdo, V. Saini, B.C. Berry, A.S. Biris, Hybrid perovskite photovoltaic devices: properties, architecture, and fabrication methods. Energy Technol. 5(3), 373–401 (2017). https://doi.org/10.1002/ente.201600486

    Article  CAS  Google Scholar 

  16. T. Kirchartz, Photon management in perovskite solar cells. J. Phys. Chem. Lett. 10, 5892–5896 (2019). https://doi.org/10.1021/acs.jpclett.9b02053

    Article  CAS  Google Scholar 

  17. M. Hamdoush, S.S. Ivanova, G.L. Pakhomov, P.A. Stuzhin, Heterocyclic subphthalocyanine analogue—boron(III) subporphyrazine with fused 1,2,5-thiadiazole rings. Macroheterocycles. 9(3), 230–233 (2016). https://doi.org/10.6060/mhc160424s

    Article  CAS  Google Scholar 

  18. G.L. Pakhomov, V.V. Travkin, M. Hamdoush, Yu.A. Zhabanov, P.A. Stuzhin, Thiadiazole fused subporphyrazines as acceptors in organic photovoltaic cells. Macroheterocycles 10(4–5), 548–551 (2017). https://doi.org/10.6060/mhc171038s

    Article  CAS  Google Scholar 

  19. V.V. Travkin, A.N. Fedoseev, Yu.I. Sachkov, G.L. Pakhomov, NIR photoresponse of perovskite solar cells with titanyl phthalocyanine. Macroheterocycles. 12(2), 198–201 (2019). https://doi.org/10.6060/mhc190448p

    Article  CAS  Google Scholar 

  20. A.B. Baloch, M.I. Hossain, N. Tabet, F.H. Alharbi, Practical efficiency limit of methylammonium lead iodide perovskite (CH3NH3PbI3) solar cells. J. Phys. Chem. Lett. 9, 426–434 (2018). https://doi.org/10.1021/acs.jpclett.7b03343

    Article  CAS  Google Scholar 

  21. S. Satoru, Inverted planar perovskite solar cells fabricated by all vapor phase process. Jpn. J. Appl. Phys. 60, SBBF10 (2021). https://doi.org/10.35848/1347-4065/abdad3

    Article  CAS  Google Scholar 

  22. S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, F. Hao, Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J. Mater. Chem. A 8, 12201–12225 (2020). https://doi.org/10.1039/d0ta03957h

    Article  CAS  Google Scholar 

  23. G. Qu, D. Khan, F. Yan, A. Atsay, H. Xiao, Q. Chen, H. Xu, I. Nar, Z.-X. Xu, Reformation of thiophene-functionalized phthalocyanine isomers for defect passivation to achieve stable and efficient perovskite solar cells. J. Energy Chem. 67, 263–275 (2022). https://doi.org/10.1016/j.jechem.2021.09.041

    Article  Google Scholar 

  24. Q. Hu, E. Rezaee, W. Xu, R. Ramachandran, Q. Chen, H. Xu, T. EL-Assaad, D.V. McGrath, Z.-X. Xu, Dual defect-passivation using phthalocyanine for enhanced efficiency and stability of perovskite solar cells. Small 17(1), 2005216 (2021). https://doi.org/10.1002/smll.202005216

    Article  CAS  Google Scholar 

  25. Y. Fang, C. Bi, D. Wang, J. Huang, The functions of fullerenes in hybrid perovskite solar cells. ACS Energy Lett. 2, 782–794 (2017). https://doi.org/10.1021/acsenergylett.6b00657

    Article  CAS  Google Scholar 

  26. L. Zhang, X. Liu, J. Li, S. McKechnie, Interactions between molecules and perovskites in halide perovskite solar cells. Sol. Energy Mater Sol. Cells. 175, 1–19 (2018). https://doi.org/10.1016/j.solmat.2017.09.038

    Article  CAS  Google Scholar 

  27. A. Liu, H. Zhu, M.G. Kim, J. Kim, Y.-Y. Noh, Engineering copper Iodide (CuI) for multifunctional p-type transparent semiconductors and conductors. Adv. Sci. 8(14), 2100546 (2021). https://doi.org/10.1002/advs.202100546

    Article  CAS  Google Scholar 

  28. F.P.G. Choi, Fast and feasible fabrication of zinc- and lithium-doped cobalt oxide layers as an emerging hole injection candidate for perovskite solar cells. J. Mater. Sci. 32, 8136–8148 (2021). https://doi.org/10.1007/s10854-021-05535-z

    Article  CAS  Google Scholar 

  29. M.N. Drozdov, P.A. Yunin, V.V. Travkin, A.I. Koptyaev, G.L. Pakhomov, Direct imaging of current-induced transformation of a perovskite/electrode interface. Adv. Mater. Interfaces 6(12), 1900364 (2019). https://doi.org/10.1002/admi.201900364

    Article  CAS  Google Scholar 

  30. G.A. Kumar, J. Thomas, N.V. Unnikrishnan, V.P.N. Nampoori, C.P.G. Vallabhan, Optical properties of phthalocyanine molecules in cyano acrylate polymer matrix. Mater. Res. Bull. 36(1–2), 1–8 (2001). https://doi.org/10.1016/S0025-5408(01)00484-6

    Article  CAS  Google Scholar 

  31. K. Vasseur, B.P. Rand, D. Cheyns, K. Temst, L. Froyen, P. Heremans, Correlating the polymorphism of titanyl phthalocyanine thin films with solar cell performance. J. Phys. Chem. Lett. 3, 2395–2400 (2012). https://doi.org/10.1021/jz300993p

    Article  CAS  Google Scholar 

  32. S.-W. Kim, G. Kim, C.S. Moon, T.-Y. Yang, J. Seo, Metal-free phthalocyanine as a hole transporting material and a surface passivator for efficient and stable perovskite solar cells. Small Methods. 5(5), 2001248 (2021). https://doi.org/10.1002/smtd.202001248

    Article  CAS  Google Scholar 

  33. Z.R. Pratiwi, L. Nuraeni, A.H. Aimon, F. Iskandar, Morphology control of MAPbI3 perovskite thin film as an active layer of solar cells. IOP Conf. Ser. Mater. Sci. Eng. 395, 012010 (2018). https://doi.org/10.1088/1757-899X/395/1/012010

    Article  Google Scholar 

  34. B.M. Ginzburg, Sh. Tuichiev, SKh. Tabarov, A.A. Shepelevskii, L.A. Shibaev, X-ray diffraction analysis of C60 fullerene powder and fullerene soot. Tech. Phys. 50, 1458–1461 (2005). https://doi.org/10.1134/1.2131953

    Article  CAS  Google Scholar 

  35. G.L. Pakhomov, V.V. Travkin, M.N. Drozdov, P.A. Yunin, Small-molecule heterojunctions: stability to ageing under sunlight. Appl. Surf. Sci. 578, 152084 (2021). https://doi.org/10.1016/j.apsusc.2021.152084

    Article  CAS  Google Scholar 

  36. Y.C. Kim, T.-Y. Yang, N.J. Jeon, J. Im, S. Jang, T.J. Shin, H.-W. Shin, S. Kim, E. Lee, S. Kim, J.H. Noh, S.I. Seok, J. Seo, Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells. Energy Environ. Sci. 10, 2109–2116 (2017). https://doi.org/10.1039/C7EE01931A

    Article  CAS  Google Scholar 

  37. V.V. Travkin, A.I. Koptyaev, G.L. Pakhomov, P.V. Volkov, D.A. Semikov, A. Yu, S.L. Luk’yanov, Experimental study of heat transfer in thin-film perovskite-based structures using a low-coherent tandem interferometry. Tech. Phys. Lett. (2021). https://doi.org/10.21883/PJTF.2021.23.51781.18957

    Article  Google Scholar 

Download references

Funding

This work was supported by RFBR Grant No. 20-38-70123. The SubPzS3 complex was synthesized in the ISUCT under RSF Grant No. 17-13-01522. The GIXRD spectra were measured in Laboratory of Diagnostics of Radiation Defects in Solid State Nanostructures, with the financial support of Ministry of Science and Higher Education of Russian Federation (Grant No. 0030-2021-0030).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by AK (perovskite precursors) and MH (SubPzS3). PSC were obtained and characterized by VT and GP. The draft was written by VT, the authors commented on all versions of the manuscript. All authors read and approved the revised text.

Corresponding author

Correspondence to Vlad Travkin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2567 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travkin, V., Koptyaev, A., Hamdoush, M. et al. Molecular optical filtering in perovskite solar cells. J Mater Sci: Mater Electron 33, 7728–7737 (2022). https://doi.org/10.1007/s10854-022-07924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07924-4

Navigation