Skip to main content
Log in

Exploring the consequences of lanthanum incorporation on micro-structural, nanoscale morphological and magnetic traits on manganese dioxide nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The primary objective of the present work is to analyse the effectiveness of lanthanum as a dopant material through sol–gel technique, onto pure γ-MnO2 (Nsutite) nanoparticles. The X-ray diffractograms confirm the structure of both pure and lanthanum doped samples, whilst bringing to light the drastic improvement in crystallite size (~ 10 nm) due to doping of lanthanum. The existence of various functional groups present in the titular material was affirmed using FTIR spectra. The multipoint BET surface area studies report a high surface area (101.03 m2/g) for pure samples and also discusses the variation with effect to doping of lanthanum. The morphological study done using HR-SEM on the pure γ-MnO2 samples show a rice-like morphology with a grain size of 20–35 nm. On the other hand, the lanthanum doped γ-MnO2 samples display a nano-twig morphology as seen in FE-SEM images. Elemental composition analysis was confirmed using EDX. The HR-TEM images clearly corroborate to the same morphology and the SAED pattern display a highly polycrystalline nature with a fringe spacing of d = 0.33 nm for pure γ-MnO2 samples and d = 0.43 nm for 1 mol% lanthanum doped samples. The SAED diffraction rings were indexed and they clearly support the XRD results. The magnetic study discusses the paramagnetic nature of the samples and also explains the large coercive force exhibited by the lanthanum doped samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the finding of this work are included within the article.

References

  1. R.N. Bhargava, Doped nanocrystalline materials—physics and applications. J. Lumin. 70(1–6), 85–94 (1996)

    Article  CAS  Google Scholar 

  2. E.T. Goldburt, B. Kulkarni, R.N. Bhargava, J. Taylor, M. Libera, Size dependent efficiency in Tb doped Y2O3 nanocrystalline phosphor. J. Lumin. 72, 190–192 (1997)

    Article  Google Scholar 

  3. R.W. Siegel, Nanostructured materials-mind over matter. Nanostruct. Mater. 3(1–6), 1–18 (1993)

    Article  CAS  Google Scholar 

  4. E.F. Hilinski, P.A. Lucas, Y. Wang, A picosecond bleaching study of quantum-confined cadmium sulfide microcrystallites in a polymer film. J. Chem. Phys. 89(6), 3435–3441 (1988)

    Article  CAS  Google Scholar 

  5. Y.Q. Chang, D.P. Yu, Y. Long, J. Xu, X.H. Luo, R.C. Ye, Large-scale fabrication of single-crystalline Mn3O4 nanowires via vapor phase growth. J. Cryst. Growth 279(1–2), 88–92 (2005)

    Article  CAS  Google Scholar 

  6. B. Folch, J. Larionova, Y. Guari, C. Guérin, A. Mehdi, C. Reyé, Formation of Mn3O4 nanoparticles from the cluster [Mn12O12(C2H5 COO)16(H2O)3] anchored to hybrid mesoporous silica. J. Mater. Chem. 14(17), 2703–2711 (2004)

    Article  CAS  Google Scholar 

  7. C.W. Na, D.S. Han, D.S. Kim, J. Park, Y.T. Jeon, G. Lee, M.H. Jung, Ferromagnetism of MnO and Mn3O4 nanowires. Appl. Phys. Lett. 87(14), 142504 (2005)

    Article  Google Scholar 

  8. W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, J.T. Park, Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. Int. Ed. 43(9), 1115–1117 (2004)

    Article  CAS  Google Scholar 

  9. J. Park, K. An, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3(12), 891–895 (2004)

    Article  CAS  Google Scholar 

  10. D. Zitoun, N. Pinna, N. Frolet, C. Belin, Single crystal manganese oxide multipods by oriented attachment. J. Am. Chem. Soc. 127(43), 15034–15035 (2005)

    Article  CAS  Google Scholar 

  11. J. Jiang, A. Kucernak, Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochim. Acta 47(15), 2381–2386 (2002)

    Article  CAS  Google Scholar 

  12. Y. Chabre, J. Pannetier, Structural and electrochemical properties of the proton/γ-MnO2 system. Prog. Solid State Chem. 23(1), 1–130 (1995)

    Article  CAS  Google Scholar 

  13. K. Suetsugu, T. Shoji, K. Sekitani, An investigation of structural water in electrolytic manganese dioxide (EMD). TOSOH Res. Technol. Rev. 49, 21 (2005)

    CAS  Google Scholar 

  14. D. Balachandran, D. Morgan, G. Ceder, First principles study of H-insertion in MnO2. J. Solid State Chem. 166(1), 91–103 (2002)

    Article  CAS  Google Scholar 

  15. L.S. Dent Glasser, L. Ingram, Refinement of the crystal structure of groutite–MnOOH. Acta Crystallogr. Sect. B 24(9), 1233–1236 (1968)

    Article  Google Scholar 

  16. C. Klingsberg, R. Roy, Stability and interconvertibility of phases in the system Mn-O-OH. Am. Mineral. 44(7–8), 819–838 (1959)

    CAS  Google Scholar 

  17. L.A.H. MacLean, F.L. Tye, The structure of fully H-inserted γ-manganese dioxide compounds. J. Solid State Chem. 123(1), 150–160 (1996)

    Article  CAS  Google Scholar 

  18. M.H. Rossouw, D.C. Liles, M.M. Thackeray, W.I.F. David, S. Hull, Alpha manganese dioxide for lithium batteries: a structural and electrochemical study. Mater. Res. Bull. 27(2), 221–230 (1992)

    Article  CAS  Google Scholar 

  19. J. Park, E. Kang, C.J. Bae, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, H.M. Park, T. Hyeon, Synthesis, characterization, and magnetic properties of uniform-sized MnO nanospheres and nanorods. J. Phys. Chem. B 108(36), 13594–13598 (2004)

    Article  CAS  Google Scholar 

  20. T. Ahmad, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). J. Mater. Chem. 14(23), 3406–3410 (2004)

    Article  CAS  Google Scholar 

  21. C. Palache, H. Berman, C. Frondel, Dana’s System of Mineralogy, vol. II (The Georgia Mineral Society Inc, Norcross, 1951), pp. 439–442

    Google Scholar 

  22. J. Zhao, Z. Tao, J. Liang, J. Chen, Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries. Cryst. Growth Des. 8(8), 2799–2805 (2008)

    Article  CAS  Google Scholar 

  23. X.G. Zhang, C.M. Shen, H.L. Li, Preparation of γ-MnO2/carbon composite material by a wet chemical method. Mater. Res. Bull. 36(3–4), 541–546 (2001)

    Article  CAS  Google Scholar 

  24. M. Behpour, A.M. Attaran, M.M. Sadiany, A. Khoobi, Adsorption effect of a cationic surfactant at carbon paste electrode as a sensitive sensor for study and detection of folic acid. Measurement 77, 257–264 (2016)

    Article  Google Scholar 

  25. N.H. Arani, S.M. Ghoreishi, A. Khoobi, Increasing the electrochemical system performance using a magnetic nanostructured sensor for simultaneous determination of L-tyrosine and epinephrine. Anal. Methods 11(9), 1192–1198 (2019)

    Article  CAS  Google Scholar 

  26. S.M. Ghoreishi, A. Khoobi, M. Behpour, S. Masoum, Application of multivariate curve resolution alternating least squares to biomedical analysis using electrochemical techniques at a nanostructure-based modified sensor. Electrochim. Acta 130, 271–278 (2014)

    Article  CAS  Google Scholar 

  27. S.M. Ghoreishi, F.Z. Kashani, A. Khoobi, M. Enhessari, Fabrication of a nickel titanate nanoceramic modified electrode for electrochemical studies and detection of salicylic acid. J. Mol. Liq. 211, 970–980 (2015)

    Article  CAS  Google Scholar 

  28. A.M. Hashem, H.M. Abuzeid, N. Narayanan, H. Ehrenberg, C.M. Julien, Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2. Mater. Chem. Phys. 130(1–2), 33–38 (2011)

    Article  CAS  Google Scholar 

  29. C.S. Sridhar, K.S.M. Laxmi, D.M. Potukuchi, C.S. Lakshmi, Dielectric properties of superparamagnetic titanium doped nanophased Mn–Zn ferrites for high frequency applications. Mater. Res. Express 6(12), 126117 (2020)

    Article  Google Scholar 

  30. M.A. Almessiere, Y. Slimani, S. Rehman, F.A. Khan, Ç.D. Güngüneş, S. Güner, S.E. Shirsath, A. Baykal, Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced Ce3+/Dy3+ co-activated Mn-Zn nanospinel ferrites. Arab. J. Chem. 13(10), 7403–7417 (2020)

    Article  CAS  Google Scholar 

  31. K. Tanbir, M.P. Ghosh, R.K. Singh, S. Mukherjee, Gd-doped soft Mn–Zn nanoferrites: synthesis, microstructural, magnetic and dielectric characterizations. J. Mater. Sci. 31(4), 3529–3538 (2020)

    CAS  Google Scholar 

  32. J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, Z. Jiang, A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale 8(16), 8899–8909 (2016)

    Article  CAS  Google Scholar 

  33. M. Kaiser, Effect of rare earth elements on the structural, magnetic and electrical behavior of Ni-Zn-Cr nanoferrites. J. Alloy. Compd. 719, 446–454 (2017)

    Article  CAS  Google Scholar 

  34. S. Jauhar, S. Singhal, Chromium and copper substituted lanthanum nano-ferrites: their synthesis, characterization and application studies. J. Mol. Struct. 1075, 534–541 (2014)

    Article  CAS  Google Scholar 

  35. G. Shao, Y. Yao, S. Zhang, P. He, Supercapacitor characteristic of La-doped Ni(OH)2 prepared by electrode-position. Rare Met. 28(2), 132–136 (2009)

    Article  CAS  Google Scholar 

  36. R.V. Wandekar, B.N. Wani, S.R. Bharadwaj, High temperature thermal expansion and electrical conductivity of Ln0.95MnO3+δ (Ln= La, Nd or Gd). J. Alloy. Compd. 433(1–2), 84–90 (2007)

    Article  CAS  Google Scholar 

  37. M.K. Bharti, S. Chalia, P. Thakur, A. Thakur, Effect of lanthanum doping on microstructural, dielectric and magnetic properties of Mn0.4Zn0.6Cd0.2LaxFe1.8-xO4 (0.0≤ x≤ 0.4). J. Supercond. Novel Magn. 2021, 1–10 (2021)

    Google Scholar 

  38. R.R. Kanna, N. Lenin, K. Sakthipandi, M. Sivabharathy, Impact of lanthanum on structural, optical, dielectric and magnetic properties of Mn1-xCuxFe185La015O4 spinel nanoferrites. Ceram. Int 43(17), 15868–15879 (2017)

    Article  Google Scholar 

  39. V.J. Mane, D.B. Malavekar, S.B. Ubale, R.N. Bulakhe, I.N. Insik, C.D. Lokhande, Binder free lanthanum doped manganese oxide@ graphene oxide composite as high energy density electrode material for flexible symmetric solid state supercapacitor. Electrochim. Acta 335, 135613 (2020)

    Article  CAS  Google Scholar 

  40. N. Lenin, R. Rajesh Kanna, K. Sakthipandi, A. Senthil Kumar, Structural, electrical and magnetic properties of NiLaxFe2-xO4 nanoferrites. Mater. Chem. Phys. 212, 385–393 (2018)

    Article  CAS  Google Scholar 

  41. K. Chen, W. Pan, D. Xue, Phase transformation of Ce3+- doped MnO2 for pseudocapacitive electrode materials. J. Phys. Chem. C 120(36), 20077–20081 (2016)

    Article  CAS  Google Scholar 

  42. R. Rajagopal, K.-S. Ryu, Synthesis of La and Ce mixed MnO2 nanostructure/rGO composite for supercapacitor applications. ChemElectroChem 5(16), 2218–2227 (2018)

    Article  CAS  Google Scholar 

  43. X.R. Jing-Wang, T.Y. Bao-Lian, Lanthanum doped manganese dioxide/carbon nanotube composite electrodes for electrochemical supercapacitors. Acta Phys. Chim. Sin. 27(10), 2340–2346 (2011)

    Article  Google Scholar 

  44. A.A. Yadav, V.S. Kumbhar, S.J. Patil, N.R. Chodankar, C.D. Lokhande, Supercapacitive properties of chemically deposited La2O3 thin film. Ceram. Int. 42(1), 2079–2084 (2016)

    Article  CAS  Google Scholar 

  45. X. Liu, C. Chen, Y. Zhao, B. Jia, A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J. Nanomater. 2013, 736375 (2013)

    Google Scholar 

  46. M. Shaban, A.M. El Sayed, Effects of lanthanum and sodium on the structural, optical and hydrophilic properties of sol–gel derived ZnO films: A comparative study. Mater. Sci. Semicond. Process. 41, 323–334 (2016)

    Article  CAS  Google Scholar 

  47. M.V. Ananth, S. Pethkar, K. Dakshinamurthi, Distortion of MnO6 octahedra and electrochemical activity of Nstutite-based MnO2 polymorphs for alkaline electrolytes—an FTIR study. J. Power Sources 75(2), 278–282 (1998)

    Article  CAS  Google Scholar 

  48. F.R. Mariosi, J. Venturini, A. da Cas Viegas, C.P. Bergmann, Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceram. Int. 46(3), 2772–2779 (2020)

    Article  CAS  Google Scholar 

  49. M.S. Hamdy, B.M. Al-Shehri, K.S. Al-Namshah, M. Shkir, Synthesis, characterization, and photoluminescence property of Nd–TUD-1. Luminescence 36(1), 192–199 (2021)

    Article  CAS  Google Scholar 

  50. B.M. Al-Shehri, T.M. Bawazeer, M.S. Alsoufi, M. Shkir, M.S. Hamdy, Facile synthesis, characterization, and photoluminescence property of lanthanum incorporated TUD-1. Optik 241, 166925 (2021)

    Article  CAS  Google Scholar 

  51. M.A. Ratner, D. Ratner, Nanotechnology: A Gentle Introduction to the Next Big Idea (Prentice Hall Professional, Hoboken, 2003)

    Google Scholar 

  52. J. Lai, K.V. Shafi, A. Ulman, K. Loos, N.L. Yang, M.H. Cui, T. Vogt, C. Estournès, D.C. Locke, Mixed iron− manganese oxide nanoparticles. J. Phys. Chem. B 108(39), 14876–14883 (2004)

    Article  CAS  Google Scholar 

  53. R. Saravanan, S. Francis, J. Berchmans, Doping level of Mn in high temperature grown Zn1−xMnxO studied through electronic charge distribution, magnetization, and local structure. Chem. Pap. 66(3), 226–234 (2012)

    Article  CAS  Google Scholar 

  54. K. Ali, A. Bahadur, A. Jabbar, S. Iqbal, I. Ahmad, M.I. Bashir, Synthesis, structural, dielectric and magnetic properties of CuFe2O4/MnO2 nanocomposites. J. Magn. Magn. Mater. 434, 30–36 (2017)

    Article  CAS  Google Scholar 

  55. S. Saravanakumar, S. Sasikumar, S. Israel, G.R. Pradhiba, R. Saravanan, Structural, magnetic and charge-related properties of nano-sized cerium manganese oxide, a dilute magnetic oxide semiconductor. Mater. Sci. Semicond. Process. 17, 186–193 (2014)

    Article  CAS  Google Scholar 

  56. T. Abe, T. Kisi, A. Yasumori, Magnetic properties of glass ceramic in Fe3O4-MnO2-SiO2 system. J. Phys. 232(1), 012018 (2010)

    Google Scholar 

  57. A. Aslinjensipriya, R. Sylvia Reena, R. Ragu, S. Grace Infantiya, G. Mangalam, C. Justin Raj, S. Jerome Das, Exploring the influence of tin in micro-structural, magneto-optical and antimicrobial traits of nickel oxide nanoparticles. Surf. Interfaces 2021, 101605 (2021)

    Google Scholar 

  58. J. Al Boukhari, L. Zeidan, A. Khalaf, R. Awad, Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. Chem. Phys. 516, 116–124 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author records her thanks to the various Instrumentation facilities extended by IIT-M (SAIF), IISc., (SATF), Bangalore, Department of Nuclear Physics, Madras University and NCNSNT, Madras University.

Author information

Authors and Affiliations

Authors

Contributions

SAJ—conceptualization, investigation, writing original draft. RR—visualization, software validation, formal analysis. MMJ—validation. AD—validation, conceptualization. SJD—overall mentorship for this research activity.

Corresponding author

Correspondence to R. Ragu.

Ethics declarations

Conflict of interest

All authors of this manuscript have expressed their consent to send the manuscript in the current revised form and they assure that there are no conflict of interest.

Ethical approval

The authors assure, all the experiments and studies carried out in current study obey the standards ethics of the research committees, both international and national. Also, they declare that the submission is an exclusive to "Journal of Materials Science: Materials in Electronics (JMSE)" and not under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, S.A., Ragu, R., Jaculine, M.M. et al. Exploring the consequences of lanthanum incorporation on micro-structural, nanoscale morphological and magnetic traits on manganese dioxide nanoparticles. J Mater Sci: Mater Electron 33, 6856–6871 (2022). https://doi.org/10.1007/s10854-022-07863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07863-0

Navigation