Skip to main content
Log in

Conjugative electrospinning towards Janus-type nanofibers array membrane concurrently displaying dual-functionality of improved red luminescence and tuneable superparamagnetism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A [Eu(BA)3phen/polyvinyl pyrrolidone (PVP)]//[Fe3O4/PVP] Janus-type nanofibers array membrane (JNAM) concurrently displaying dual-functionality of improved red luminescence and tuneable superparamagnetism is successfully built by conjugative electrospinning. Conjugative electrospinning has lower claims on the similarity of the viscosity of two types of spinning dope than parallel electrospinning, so there’s no need to keep identical viscosity between two spinning dopes. This technique solves the dilemma of diffusion between two spinning dopes in parallel electrospinning process using two ordinary spinnerets for electrospinning, and entirely separates superparamagnetic nanoparticles from luminescent molecules. It is found that luminescent performance of JNAM is stronger than that of counterpart Janus-type nanofibers non-array membrane. The superparamagnetism of JNAM can be regulated by varying internal Fe3O4 NPs amount. The JNAM possesses latent application value in display devices, nanotechnology, etc. due to the improved red luminescence and tuneable superparamagnetism. Furthermore, this design notion and manufacturing approach furnish a route for constructing other unidimensional multifunctional Janus-type nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.K. Li, Y.S. Fang, X.M. Zhang, ACS Appl. Mat. Interfaces 12, 8989–8999 (2020)

    Article  CAS  Google Scholar 

  2. J.W. Sun, J. Bian, J.D. Li, Z.Q. Zhang, Z.J. Li, Y. Qu, L.L. Bai, Z.D. Yang, L.Q. Jing, Appl. Catal. B 277, 119199 (2020)

    Article  CAS  Google Scholar 

  3. P. Gao, M.H. Tai, D.D. Sun, ChemPlusChem 78, 1475–1482 (2018)

    Article  Google Scholar 

  4. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Adv. Funct. Mater. 25, 2436–2443 (2015)

    Article  CAS  Google Scholar 

  5. K. Thanigai Arul, E. Manikandan, P.P. Murmu, J. Kennedy, M. Henini, J. Alloys Compd. 720, 395–400 (2017)

    Article  CAS  Google Scholar 

  6. K. Thanigai Arul, E. Manikandan, R. Ladchumananandasivam, M. Maaza, Polym. Int. 65, 1482–1485 (2016)

    Article  Google Scholar 

  7. C. Luo, X.X. Wang, J.Q. Wang, K. Pan, Compos. Sci. Technol. 133, 97–103 (2016)

    Article  CAS  Google Scholar 

  8. H.J. Yen, C.W. Chang, H.Q. Wong, G.Y. Liou, Polym. Chem. 9, 1693–1700 (2018)

    Article  CAS  Google Scholar 

  9. M. Ko, L. Mendeckia, K.A. Mirica, Chem. Commun. 54, 7873–7891 (2018)

    Article  CAS  Google Scholar 

  10. K. Lokesh, G. Kavitha, E. Manikandan, G.K. Mani, K. Kaviyarasu, J.B.B. Rayappan, R. Ladchumananandasivam, J. Sundeep Aanand, M. Jayachandran, M. Maaza, IEEE Sens. J. 16, 2477–2483 (2016)

    Article  CAS  Google Scholar 

  11. A.H. Shah, M. Basheer Ahamed, E. Manikandan, R. Chandramohan, M. Iydroose, J. Mater. Sci. 24, 2302–2308 (2013)

    CAS  Google Scholar 

  12. C. Sasklala, N. Durairaj, I. Baskaran, B. Sathyaseelan, M. Henini, E. Manikandan, J. Alloys Compd. 712, 870–877 (2017)

    Article  Google Scholar 

  13. N. Shrivastava, L.U. Khan, Z.U. Khan, J.M. Vargas, O. Moscoso-Londoño, C. Ospina, H.F. Brito, Y. Javed, M.C.F.C. Felinto, A.S. Menezes, M. Knobel, S.K. Sharma, J. Mater. Chem. C 5, 2282–2290 (2017)

    Article  CAS  Google Scholar 

  14. Y. Ammari, N. Baaalla, E.K. Hlil, S. Abid, Sci. Rep. 10, 1316 (2020)

    Article  CAS  Google Scholar 

  15. D.D. Wang, Y.Y. Zhang, M.Z. Zhai, Y. Huang, H. Li, X.C. Liu, P.W. Gong, Z. Liu, J.M. You, ChemNanoMat 7, 71–77 (2020)

    Article  Google Scholar 

  16. E. Manikandan, M.K. Moodley, S. Sinha Ray, B.K. Panigrahi, R. Krishnan, N. Padhy, K.G.M. Nair, A.K. Tyagi, J. Nanosci. Nanotechnol. 10, 5602–5611 (2010)

    Article  CAS  Google Scholar 

  17. J.M. Tian, X. Chen, T.Q. Wang, W.Y. Pei, F. Li, D. Li, Y. Yang, X.T. Dong, Sens. Actuators B 344, 130227 (2021)

    Article  CAS  Google Scholar 

  18. H. Shao, D.D. Yin, D. Li, Q.L. Ma, W.S. Yu, X.T. Dong, ACS Appl. Mater. Inter. 13, 49288–49300 (2021)

    Article  CAS  Google Scholar 

  19. P. Li, K. Li, X.F. Niu, Y.B. Fan, RSC Adv. 6, 99034–99043 (2016)

    Article  CAS  Google Scholar 

  20. J. Tang, L. Chen, J. Li, Z. Wang, J.H. Zhang, L.G. Zhang, Y.S. Luo, X.J. Wang, Nanoscale 7, 14752–14759 (2015)

    Article  CAS  Google Scholar 

  21. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. Eng. J. 260, 222–230 (2015)

    Article  CAS  Google Scholar 

  22. Q.T. Wang, Y.T. Geng, J.H. Li, M.Z. Yin, Y.S. Hu, Y.X. Liu, K. Pan, Nanotechnology 29, 135702 (2018)

    Article  Google Scholar 

  23. Y. Hong, X. Shu, Y.Q. Qin, J.W. Cui, Z. Yong, Y.C. Wu, J. Supercond. Nov. Magn. 29, 2367–2371 (2016)

    Article  CAS  Google Scholar 

  24. Y.J. Lu, Y. Zheng, S.S. You, F. Wang, Z. Gao, J. Shen, W.T. Yang, M.Z. Yin, ACS Appl. Mater. Inter. 7, 5226–5232 (2015)

    Article  CAS  Google Scholar 

  25. H.B. Zhang, C. Huang, N.S. Li, J. Wer, J. Colloid Interface Sci. 592, 249–258 (2021)

    Article  CAS  Google Scholar 

  26. L.J. Diao, Q.L. Ma, W.S. Yu, G.X. Liu, J.X. Wang, X.T. Dong, Macromol. Mater. Eng. 306, 202100052 (2021)

    Article  Google Scholar 

  27. X.L. Zheng, S.X. Kang, K. Wang, Y.Y. Yang, D.G. Yu, F.X. Wan, G.R. Williams, S.W.A. Bligh, Int. J. Pharm. 596, 120203 (2021)

    Article  CAS  Google Scholar 

  28. F. Bi, X.T. Dong, J.X. Wang, G.X. Liu, ChemPlusChem 79, 1713–1719 (2014)

    CAS  Google Scholar 

  29. Y.T. Geng, P. Zhang, Q.T. Wang, Y.X. Liu, K. Pan, J. Mater. Chem. B 5, 5390–5396 (2017)

    Article  CAS  Google Scholar 

  30. Z. Qin, Q.T. Wang, C.Z. Wang, D.F. Xu, G.P. Ma, and K. J. Pan. Mater. Chem. C 7, 1065–1071 (2019)

    Article  CAS  Google Scholar 

  31. S. Cong, F. Guo, ACS Appl. Polym. Mater 1, 3443–3451 (2019)

    Article  CAS  Google Scholar 

  32. X. Ji, R. Li, G.M. Liu, W.Y. Jia, M.L. Sun, Y. Liu, Y.G. Luo, Z.Q. Cheng, Mater. Des. 207, 109864 (2021)

    Article  CAS  Google Scholar 

  33. H.N. Qi, Q.L. Ma, Y.R. Xie, Y. Song, J. Tian, X.T. Dong, D. Li, G.X. Liu, H. Yu, J. Mater. Chem. C 8, 6565–6576 (2020)

    Article  CAS  Google Scholar 

  34. Y.C. Chou, C.L. Shao, X.H. Li, C.Y. Su, H.C. Xu, M.Y. Zhang, P. Zhang, X. Zhang, Y.C. Liu, Appl. Surf. Sci. 285, 509–516 (2013)

    Article  CAS  Google Scholar 

  35. L. Yang, Q.L. Ma, X. Xi, D. Li, J.Y. Liu, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, Chem. Eng. J. 361, 713–724 (2019)

    Article  CAS  Google Scholar 

  36. M.L. Wang, D. Li, J. Li, S.Y. Li, Z. Chen, D.G. Yu, Z.P. Liu, J.Z.H. Guo, Mater. Des. 196, 109075 (2020)

    Article  CAS  Google Scholar 

  37. M.Q. Chi, S.H. Chen, M.X. Zhong, C. Wang, X.F. Lu, Chem. Commun. 54, 5827–5830 (2018)

    Article  CAS  Google Scholar 

  38. X.J. Zhou, Q.L. Ma, W.S. Yu, T.T. Wang, X.T. Dong, J.X. Wang, G.X. Liu, J. Mater. Sci. 50, 7884–7895 (2015)

    Article  CAS  Google Scholar 

  39. A.S. Levitt, C.E. Knittel, R. Vallett, M. Koerner, G. Dion, C.L. Schauer, J. Appl. Polym. Sci. 134, 44813 (2017)

    Article  Google Scholar 

  40. J. Ma, Y.F. He, X.L. Liu, W.M. Chen, A. Wang, C.Y. Lin, X.M. Mo, X.J. Ye, Int. J. Nanomed. 13, 1553–1567 (2018)

    Article  CAS  Google Scholar 

  41. G.Y. Wang, Q.L. Ma, J. Tian, L.B. Fan, D. Li, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, RSC Adv. 9, 206–214 (2019)

    Article  CAS  Google Scholar 

  42. D.W. Li, X. Pan, B.B. Sun, T. Wu, W.M. Chen, C. Huang, Q.F. Ke, H.A.E. Hamshary, S.S.A. Deyab, X.M. Mo, J. Mater. Chem. B 3, 8823–8831 (2015)

    Article  CAS  Google Scholar 

  43. A.S. Levitt, R. Vallett, G. Dion, C.L. Schauer, J. Appl. Polym. Sci. 135, 46404 (2018)

    Article  Google Scholar 

  44. L.B. Fan, Q.L. Ma, J. Tian, D. Li, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci. 53, 2290–2302 (2018)

    Article  CAS  Google Scholar 

  45. X.L. Song, W.S. Liu, J. Wang, S.H. Xu, B. Liu, Q.S. Cai, Y.Z. Ma, Mater. Lett. 212, 20–24 (2017)

    Article  Google Scholar 

  46. R. Bonzanini, D.T. Dias, E.M. Girotto, E.C. Muniz, M.L. Baesso, J.M.A. Caiut, Y. Messaddeq, S.J.L. Ribeiro, A.C. Bento, A.F. Rubira, J. Lumin. 117, 61–67 (2006)

    Article  CAS  Google Scholar 

  47. K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci. 26, 5994–6003 (2015)

    CAS  Google Scholar 

  48. K. Jia, Y. Bai, L. Wang, Y.Y. Luo, W.B. Hu, X.H. He, P. Wang, R. Marks, X.B. Liu, Polymer 230, 124043 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (52173155, 51803012), Natural Science Foundation of Jilin Province (2020122330JC, 20180520011JH), Science and Technology Research Planning Project of the Education Department of Jilin Province during the 13th Five-Year Plan Period (JJKH20200769KJ), the Department of Science and Technology of Jilin Province (YDZJ202101ZYTS059), the Natural Science Foundation of Chongqing, China (cstc2021jcyj-msxmX0798, cstc2021jcyj-msxmX1076).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangting Dong or Xuejian Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Wang, G., Ma, Q. et al. Conjugative electrospinning towards Janus-type nanofibers array membrane concurrently displaying dual-functionality of improved red luminescence and tuneable superparamagnetism. J Mater Sci: Mater Electron 33, 4438–4449 (2022). https://doi.org/10.1007/s10854-021-07635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07635-2

Navigation