Skip to main content
Log in

Evaluation of superconducting features and gap coefficients for electron–phonon couplings properties of MgB2 with multi-walled carbon nanotube addition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the samples are prepared by solid state reaction method at different weight ratios (0–4%). The characterization of materials produced is conducted with the aid of powder X-ray diffraction (XRD), temperature-dependent electrical resistivities (ρ-T) and magnetization (M–H) measurements. Moreover, the change in the scattering/breaking of cooper-pairs in the small homogeneous clusters in the superconducting paths with the addition of multi-walled carbon nanotube is also examined by the energy gap coefficients. All the experimental findings show that the weight ratio of wt 2% is observed to be the optimum addition level. The XRD results indicate that the MgB2 material prepared by the optimum level crystallizes better in hexagonal symmetry. The critical current density is found to increase from 1.0 × 104 to 2.3 × 104A cm−2 depending on the increment in the magnetization values. On the other hand, the addition mechanism is noted to degrade slightly the general electrical features, critical transition temperatures, lattice cell constants and crystallite size of MgB2 material. Regardless, although the carbon nanotube addition seems to be negative effect on some general properties, the fundamental characteristic properties (the crystallinity with smoother crystallographic transition, magnetization values, coupling of adjacent layers, degree of broadening and especially formation of effective nucleation centers for the flux pinning ability) improve seriously at the optimum dopant level. Thus, the MgB2 prepared with the optimum carbon nanotube concentration can exhibit higher performance against the magnetic field and current in larger magnetic field strengths applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001). https://doi.org/10.1038/35065039

    Article  CAS  Google Scholar 

  2. D. Rodrigues Jr., L.H.M. Antunes, A.L.R. Manesco, E.M. Moraes, L.B.S. da Silva, Development and characterization of Cu–Nb–MgB2 and CuNi–Nb–MgB2 Wires with VB2 and carbon nanotube additions. IEEE Trans. Appl. Supercon. 25, 3 (2015)

    Article  Google Scholar 

  3. E.W. Collings, E. Lee, M.D. Sumption, M. Tomsic, X.L. Wang, S. Soltanian, S.X. Dou, Continuous- and batch-processed MgB2/Fe strands-transport and magnetic properties. Physica C 386, 555–559 (2003). https://doi.org/10.1016/S0921-4534(02)02174-3

    Article  CAS  Google Scholar 

  4. T. Matsushita, M. Kiuchi, E.S. Otabe, A. Yamamoto, J. Shimoyama, K, Kishio, Critical current properties at high magnetic fields in polycrystalline MgB2 superconductors. Physica C. 470(20), 1406–1410 (2010). https://doi.org/10.1016/j.physc.2010.05.124

    Article  CAS  Google Scholar 

  5. M.A. Aksan, M.E. Yakıncı, A. Güldeste, Co-addition into MgB2: the structural and electronic properties of (MgB2)2−xCox. J. Alloy. Compd. 424(1–2), 33–40 (2006). https://doi.org/10.1016/j.jallcom.2005.12.066

    Article  CAS  Google Scholar 

  6. B. Qu, X.D. Sun, J.-G. Li, Z.M. Xiu, S.H. Liu, C.P. Xue, Significant improvement of critical current density in MgB2 doped with ferromagnetic Fe3O4 nanoparticles. Supercond. Sci. Technol. 22(1), 015027 (2008). https://doi.org/10.1088/0953-2048/22/1/015027

    Article  CAS  Google Scholar 

  7. A. Berenov, A. Serquis, X.Z. Liao, Y.T. Zhu, D.E. Peterson, Y. Bugoslavsky, K.A. Yates, M.G. Blamire, L.F. Cohen, J.L. MacManus-Driscoll, Enhancement of critical current density in low level Al-doped MgB2. Supercond. Sci. Technol. (2004). https://doi.org/10.1088/0953-2048/17/10/001

    Article  Google Scholar 

  8. S. Ueda, J. Shimoyama, A. Yamamoto, S. Horii, K. Kishio, Enhanced critical current properties observed in Na2CO3-doped MgB2. Supercond. Sci. Technol. 17(7), 926–930 (2004). https://doi.org/10.1088/0953-2048/17/7/017

    Article  CAS  Google Scholar 

  9. X. Zhang, D. Wang, Z. Gao, L. Wang, Y. Ma, Z. Qi, K. Watanabe, The doping effect of activated carbon on the superconducting properties of MgB2 tapes. Supercond. Sci. Technol. 21, 075008 (2008)

    Article  Google Scholar 

  10. L.B.S. Da Silva, D. Rodrigues Jr., G. Serrano, V.C.V. Metzner, M.T. Malachevsky, A. Serquis, MgB2 superconductors with addition of other diborides and SiC. IEEE Trans. Appl. Supercond. 21, 2639–2642 (2011)

    Article  Google Scholar 

  11. T. Masui, S. Lee, S. Tajima, Carbon-substitution effect on the electronic properties of MgB2 single crystals. Phys. Rev. B 70, 024504 (2004)

    Article  Google Scholar 

  12. R.H.T. Wilke, S.L. Bud’ko, P.C. Canfield, D.K. Finnemore, R.J. Suplinskas, S.T. Hannahs, Systematic effects of carbon doping on the superconducting properties of Mg(B1-xCx)(2). Phys. Rev. Lett. 92, 217003 (2004)

    Article  CAS  Google Scholar 

  13. L. Chunyan, S. Hongli, L. Min, M. Lin, W. Yi, T. Min, W. Baicen, C. Jin, J. Yaotang, Effect of malonic acid and of different doping methods on the superconducting properties of MgB2 superconductors. Physica C 555, 60–65 (2018). https://doi.org/10.1016/j.physc.2018.10.011

    Article  CAS  Google Scholar 

  14. W.K. Yeoh, J. Horvat, S.X. Dou, P. Munroe, Effect of carbon nanotube size on superconductivity properties of MgB2. IEEE Trans. Appl. Supercond. 15(2), 3284–3287 (2005). https://doi.org/10.1109/TASC.2005.848853

    Article  CAS  Google Scholar 

  15. C.H. Cheng, H. Zhang, Y. Zhao, Y. Feng, X.F. Rui, P. Munroe, H.M. Zeng, N. Koshizuka, M. Murakami, Doping effect of nano-diamond on superconductivity and flux pinning in MgB2. Supercond. Sci. Technol. 16(10), 1182–1186 (2003). https://doi.org/10.1088/0953-2048/16/10/310

    Article  CAS  Google Scholar 

  16. S. Soltanian, J. Horvat, X.L. Wang, P. Munroe, S.X. Dou, Effect of nano-carbon particle doping on the flux pinning properties of MgB2 superconductor. Physica C 390(3), 185–190 (2003). https://doi.org/10.1016/S0921-4534(03)00960-2

    Article  CAS  Google Scholar 

  17. S.J. Ye, A. Matsumoto, Y.C. Zhang, H. Kumakura, Strong enhancement of high-field critical current properties and irreversibility field of MgB2 superconducting wires by coronene active carbon source addition via the new B powder carbon-coating method. Supercond. Sci. Technol. 27(8), 085012 (2014). https://doi.org/10.1088/0953-2048/27/8/085012

    Article  CAS  Google Scholar 

  18. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  19. D. Patel, M. Maeda, S. Choi, S.J. Kim, M. Shahabuddin, M.P. Japar, S. Hossain, J.H. Kim, Multiwalled carbon nanotube-derived superior electrical, mechanical and thermal properties in MgB2 wires. Scripta Mater. 88, 13–16 (2014). https://doi.org/10.1016/j.scriptamat.2014.06.010

    Article  CAS  Google Scholar 

  20. J.H. Kim, W.K. Yeoh, X. Xu, S.X. Dou, P. Munroe, M. Rindfleisch, M. Tomsic, Superconductivity of MgB2 with embedded multiwall carbon nanotube. Physica C 449(2), 133–138 (2006). https://doi.org/10.1016/j.physc.2006.08.003

    Article  CAS  Google Scholar 

  21. S.X. Dou, W.K. Yeoh, J. Horvat, M. Ionescu, Effect of carbon nanotube doping on critical current density of MgB2 superconductor. Appl. Phys. Lett. 83, 4996 (2003). https://doi.org/10.1063/1.1634378

    Article  CAS  Google Scholar 

  22. C. Shekhar, R. Giri, S.K. Malik, O.N. Srivastava, Improved critical current density of MgB2—carbon nanotubes (CNTs) composite. J. Nanosci. Nanotechnol. 7(6), 1804–1809 (2007). https://doi.org/10.1166/jnn.2007.720

    Article  CAS  Google Scholar 

  23. W.K. Yeoh, J.H. Kim, J. Horvat, S.X. Dou, P. Munroe, Improving flux pinning of MgB2 by carbon nanotube doping and ultrasonication. Supercond. Sci. Technol. 19, L5–L8 (2006). https://doi.org/10.1088/0953-2048/19/2/L01

    Article  CAS  Google Scholar 

  24. P. Kováč, I. Hušek, V. Skákalova, J. Meyer, E. Dobročka, M. Hirscher, S. Roth, Transport current improvements of in situ MgB2 tapes by the addition of carbon nanotubes, silicon carbide or graphite. Supercond. Sci. Technol. 20(1), 105–111 (2007). https://doi.org/10.1088/0953-2048/20/1/019

    Article  CAS  Google Scholar 

  25. W.X. Li, Y. Li, R.H. Chen, W.K. Yoeh, S.X. Dou, Effect of magnetic field processing on the microstructure of carbon nanotubes doped MgB2. Physica C. 460–462(1), 570–571 (2007). https://doi.org/10.1016/j.physc.2007.04.139

    Article  CAS  Google Scholar 

  26. A. Serquis, G.P. Serrano, S.M. Moreno, L. Civale, B. Maiorov, F. Balakirev, M. Jaime, Correlated enhancement of Hc2 and Jc in carbon nanotube doped MgB2. Supercond. Sci. Technol. 20(4), L12–L15 (2007). https://doi.org/10.1088/0953-2048/20/4/L02

    Article  CAS  Google Scholar 

  27. Q. Cai, Y. Liu, Z. Ma, D.A. Cardwell, Fishtail effects and improved critical current density in polycrystalline bulk MgB2 containing carbon nanotubes. Physica C 492, 6–10 (2013). https://doi.org/10.1016/j.physc.2013.05.002

    Article  CAS  Google Scholar 

  28. S.X. Dou, W.K. Yeoh, O. Shcherbakova, D. Wexler, Y. Li, Z.M. Ren, P. Munroe, S.K. Chen, K.S. Tan, B.A. Glowacki, J.L. MacManus-Driscoll, Alignment of carbon nanotube additives for ımproved performance of magnesium diboride superconductors. Adv. Mater. 18(6), 785–788 (2006). https://doi.org/10.1002/adma.200501617

    Article  CAS  Google Scholar 

  29. C. Suryanarayana, M.G. Norton, X-Ray diffraction a practical approach, vol. 212 (Plenum Publishing Corporation, New York, 1998), pp. 3–19

    Google Scholar 

  30. C.P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962). https://doi.org/10.1103/PhysRevLett.8.250

    Article  Google Scholar 

  31. Z.K. Liu, Y. Zhong, D.G. Schlom, X.X. Xi, Q. Li, Computational thermodynamic modeling of the Mg–B system. Calphad 25, 299–303 (2001)

    Article  CAS  Google Scholar 

  32. P.M. Shafi, A.C. Bose, Impact of crystalline defects and size on X-ray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv. 5, 057137 (2015). https://doi.org/10.1063/1.4921452

    Article  CAS  Google Scholar 

  33. W.Z. Zhu, D.E. Miser, W.G. Chan, M.R. Hajaligol, Characterization of multiwalled carbon nanotubes prepared by carbon arc cathode deposit. Mater. Chem. Phys. 82(3), 638–647 (2003). https://doi.org/10.1016/S0254-0584(03)00341-9

    Article  CAS  Google Scholar 

  34. J.H. Kim, W.K. Yeoh, M.J. Qin, X. Xu, S.X. Dou, The doping effect of multiwall carbon nanotube on MgB2/Fe superconductor wire. J. Appl. Phys. 100(1), 013908 (2006). https://doi.org/10.1063/1.2209188

    Article  CAS  Google Scholar 

  35. L.B.S. Da Silva, E.E. Hellstrom, D. Rodrigues Jr., MgB2 superconductors with addition of ZrB2 and different carbon sources. J. Phys. 507, 012043 (2014)

    Google Scholar 

  36. W.K. Yeoh, J. Horvat, S.X. Dou, V. Keast, Strong pinning and high critical current density in carbon nanotube doped MgB2. Supercond. Sci. Technol. 17(9), 572–577 (2004). https://doi.org/10.1088/0953-2048/17/9/022

    Article  CAS  Google Scholar 

  37. P.B. Allen, W.E. Pickett, H. Krakauer, Anisotropic normal-state transport-properties predicted and analyzed for high-Tc oxide superconductors. Phys. Rev. B 37(13), 7482–7490 (1988). https://doi.org/10.1103/PhysRevB.37.7482

    Article  CAS  Google Scholar 

  38. P.W. Anderson, Hall effect in the two-dimensional luttinger liquid. Phys. Rev. Lett. 67, 2092 (1991). https://doi.org/10.1103/PhysRevLett.67.2092

    Article  CAS  Google Scholar 

  39. Y. Zalaoglu, G. Yildirim, H. Büyükuslu, N.K. Saritekin, A. Varilci, C. Terzioglu, O. Gorur, Important defeats on pinning of 2D pancake vortices in highly anisotropic Bi-2212 superconducting matrix with homovalent Bi/La substitution. J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.01.095

    Article  Google Scholar 

  40. S.B. Guner, Y. Zalaoglu, T. Turgay, O. Ozyurt, A.T. Ulgen, M. Dogruer, G. Yildirim, A detailed research for determination of Bi/Ga partial substitution effect in Bi-2212 superconducting matrix on crucial characteristic features. J. Alloy. Compd. 772, 388–398 (2019). https://doi.org/10.1016/j.jallcom.2018.09.071

    Article  CAS  Google Scholar 

  41. A.T. Ulgen, T. Turgay, C. Terzioglu, G. Yildirim, M. Oz, Role of Bi/Tm substitution in Bi-2212 system on crystal structure quality, pair wave function and polaronic states. J. Alloys Compd. 764, 755–766 (2018). https://doi.org/10.1016/j.jallcom.2018.06.142

    Article  CAS  Google Scholar 

  42. J. Ekin, Experimental techniques for low-temperature measurements: cryostat design, material properties and superconductor critical-current testing (Oxford University Press, New York, 2006)

    Book  Google Scholar 

  43. B.D. Cullity, S.R. Stock, Elements of x-ray diffraction, 3rd edn. (Pearson, USA, 2014)

    Google Scholar 

  44. X. Xu, J.H. Kim, S.X. Dou, S. Choi, J.H. Lee, H.W. Park, M. Rindeish, M. Tomsic, A correlation between transport current density and grain connectivity in MgB2/Fe wire made from ball-milled boron. J. Appl. Phys. 105, 103913 (2009). https://doi.org/10.1063/1.3129314

    Article  CAS  Google Scholar 

  45. J.M. Rowell, The widely variable resistivity of MgB2 samples. Supercond. Sci. Technol. 16(6), R17 (2003). https://doi.org/10.1088/0953-2048/16/6/201

    Article  CAS  Google Scholar 

  46. J. Jiang, B.J. Senkowicz, D.C. Larbalestier, E.E. Hellstrom, Influence of boron powder purification on the connectivity of bulk MgB2. Supercond. Sci. Technol. 19(8), L33 (2006). https://doi.org/10.1088/0953-2048/19/8/L02

    Article  CAS  Google Scholar 

  47. R.H.T. Wilke, S.L. Bud’ko, P.C. Canfield, D.K. Finnemore, R.J. Suplinskas, S.T. Hannahs, Synthesis and optimization of Mg(B1−xCx)2 wire segments. Physica C. 424, 1–16 (2005). https://doi.org/10.1016/j.physc.2005.04.016

    Article  CAS  Google Scholar 

  48. M. Dogruer, G. Yildirim, C. Terzioglu, Effect of diffusion-annealing time on magnetoresistivity of Cu-diffused bulk MgB2 superconductors with experimental and theoretical approaches. J. Mater. Sci. 24, 958–967 (2012). https://doi.org/10.1007/s10854-012-0857-8

    Article  CAS  Google Scholar 

  49. R. Awad, A.I. Abou-Aly, M.M.H. Abdel Gawad, I. G-Eldeen, The influence of SnO2 nano-particles addition on the vickers microhardness of (Bi, Pb)-2223 superconducting phase. J. Superconduct. Novel Magnet. 25, 739–745 (2012). https://doi.org/10.1007/s10948-011-1334-y

    Article  CAS  Google Scholar 

  50. A. Ianculescu, M. Gartner, B. Despax, V. Bley, Th. Lebey, R. Gavrila, M. Modreanu, Optical characterization and microstructure of BaTiO(3) thin films obtained by RF-magnetron sputtering. Appl. Surf. Sci. 253(1), 344–348 (2006). https://doi.org/10.1016/j.apsusc.2006.06.008

    Article  CAS  Google Scholar 

  51. T.A. Prikhna, Properties of MgB2 bulk, Institute for superhard materials of the national academy of sciences of Ukraine, Arxiv ResearchGate. (2014)

  52. S.X. Dou, S. Soltanian, X.L. Wang, P. Munroe, S.H. Zhou, M. Ionescu, H.K. Liu, M. Tomic, Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Appl. Phys. Lett. 81(18), 3419–3421 (2002). https://doi.org/10.1063/1.1517398

    Article  CAS  Google Scholar 

  53. R.A. Ribeiro, S.L. Bud’ko, C. Petrovic, P.C. Canfield, Carbon doping of superconducting magnesium diboride. Physica C 384(3), 227–236 (2003). https://doi.org/10.1016/S0921-4534(02)02331-6

    Article  CAS  Google Scholar 

  54. A. Yamamoto, J. Shimoyama, S. Ueda, I. Iwayama, S. Horii, K. Kishio, Effects of B4C doping on critical current properties of MgB2 superconductor. Supercond. Sci. Technol. 18(10), 1323 (2005). https://doi.org/10.1088/0953-2048/18/10/012

    Article  CAS  Google Scholar 

  55. T. Dilek, E.T. Koparan, M. Başoğlu, E. Yanmaz, The magnetic and structural properties of SiC-doped MgB2 bulks prepared by the standard ceramic processing. J. Superconduct. Novel Magnet 24(1), 495–497 (2011). https://doi.org/10.1007/s10948-010-0979-2

    Article  CAS  Google Scholar 

  56. M. Dressel, G. Guner, Electrodynamics of solids, optical properties of electrons in matter, 1st edn. (University Press, Cambridge, 2002)

    Book  Google Scholar 

  57. B.B. Jin, T. Dahm, C. Iniotakis, A.I. Gubin, E.M. Choi, H.J. Kim, S.-I.K. Lee, W.N. Kang, S.F. Wang, Y.L. Zhou, A.V. Pogrebnyakov, J.M. Redwing, X.X. Xi, N. Klein, Dependence of penetration depth, microwave surface resistance and energy gap of MgB2 thin films on their normal-state resistivity. Supercond. Sci. Technol. 18, L1 (2005). https://doi.org/10.1088/0953-2048/18/1/L01

    Article  CAS  Google Scholar 

  58. P.W. Anderson, Theory of dirty superconductors. J. Phys. Chem. Solids 11(1–2), 26–30 (1959). https://doi.org/10.1016/0022-3697(59)90036-8

    Article  CAS  Google Scholar 

  59. N. Hudakova, P. Samuely, P. Szabo, V. Plecháček, K. Knížek, D. Sedmidubskyý, Scaling of the superconducting order parameter in Bi cuprates with Tc. Physica C. 246, 163–168 (1995). https://doi.org/10.1016/0921-4534(95)00160-3

    Article  CAS  Google Scholar 

  60. A.V. Narlikar, Superconductors, 1st edn. (Oxford Press, Oxford, 2014)

    Book  Google Scholar 

  61. R. Wesche, Physical properties of high-temperature superconductors, 1 Kindle. (Wiley, Chichester, 2015)

    Book  Google Scholar 

  62. M.R. Eskildsen, M. Kugler, G. Levy, S. Tanaka, J. Jun, S.M. Kazakov, J. Karpinski, O. Fischer, Scanning tunneling spectroscopy on single crystal MgB2. Physica C. 385, 169–176 (2003). https://doi.org/10.1016/S0921-4534(02)02301-8

    Article  CAS  Google Scholar 

  63. R.S. Gonnelli, D. Daghero, G.A. Ummarino, V.A. Stepanov, J. Jun, S.M. Kazakov, J. Karpinski, Direct evidence for two-band superconductivity in MgB2 single crystals from directional point-contact spectroscopy in magnetic fields. Phys. Rev. Lett. 89, 247004 (2002). https://doi.org/10.1103/PhysRevLett.89.247004

    Article  CAS  Google Scholar 

  64. Z.Z. Li, H.J. Tao, Y. Xuan, Z.A. Ren, G.C. Che, B.-R. Zhao, Andreev reflection spectroscopy evidence for multiple gaps in MgB2. Phys. Rev. B 66, 064513 (2002). https://doi.org/10.1103/PhysRevB.66.064513

    Article  CAS  Google Scholar 

  65. S. Lee, Z.G. Khim, Y. Chong, S.H. Moon, H.N. Lee, H.G. Kim, B. Oh, E.J. Choi, Measurement of the superconducting gap of MgB2 by point contact spectroscopy. Physica C. 377, 202–207 (2002). https://doi.org/10.1016/S0921-4534(02)01349-7

    Article  CAS  Google Scholar 

  66. P. Szabo, P. Samuely, J. Kačmarčík, T. Klein, J. Marcus, D. Fruchart, S. Miraglia, C. Marcenat, A.G.M. Jansen, Evidence for two superconducting gaps in MgB2 by point-contact spectroscopy. Phys. Rev. Lett. 87, 137005 (2001). https://doi.org/10.1103/PhysRevLett.87.137005

    Article  CAS  Google Scholar 

  67. D. Daghero, R.S. Gonnelli, Probing multiband superconductivity by point-contact spectroscopy. Supercond. Sci. Technol. 23, 043001 (2010). https://doi.org/10.1088/0953-2048/23/4/043001

    Article  CAS  Google Scholar 

  68. H.J. Choi, M.L. Cohen, S.G. Louie, Anisotropic Eliashberg theory of MgB2: Tc, isotope effects, superconducting energy gaps, quasiparticles, and specific heat. Physica C. 385, 66–74 (2003). https://doi.org/10.1016/S0921-4534(02)02345-6

    Article  CAS  Google Scholar 

  69. A. Brinkman, A.A. Golubov, H. Rogalla, O.V. Dolgov, J. Kortus, Y. Kong, O. Jepsen, O.K. Andersen, Multiband model for tunneling inMgB2 junctions. Phys. Rev. B. 65, 180517(R) (2002). https://doi.org/10.1103/PhysRevB.65.180517

    Article  CAS  Google Scholar 

  70. M. Cyrot, D. Pavuna, Introduction to superconductivity and high-Tc materials, 1st edn. (World Scientific Publishing Company, Singapore, 1992)

    Book  Google Scholar 

  71. A.K. Saxena, High-temperature superconductors, 2nd edn. (Springer, New York, 2012)

    Book  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the Kastamonu University Central Research Laboratory and Gazi University Thermal Analysis Laboratory who contributed to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yildirim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, N., Cavdar, S., Ozturk, O. et al. Evaluation of superconducting features and gap coefficients for electron–phonon couplings properties of MgB2 with multi-walled carbon nanotube addition. J Mater Sci: Mater Electron 33, 3786–3800 (2022). https://doi.org/10.1007/s10854-021-07570-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07570-2

Navigation