Skip to main content

Advertisement

Log in

Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Porous activated carbon materials are extensively used as adsorbent electrode materials for energy storage devices because of their impressive superlative characteristics, such as large specific surface area, high electrical conductivity and low cost. In this work, Hierarchical porous carbon and nickel oxide nanocomposites modified by gold nanoparticles (AuNP@C@NiO-x) were synthesized through in-situ reduction methods and used as high-performance electrode material supercapacitors. The obtained nanocomposites material consisted of NiO, AuNPs nanoparticles on the surface of activated carbon material, in which the activated carbon was used as a hollow structure to attachment of NiO and AuNPs nanoparticles. The electrochemical analysis demonstrated that the AuNP@C@NiO-x composite electrode significantly improved electrochemical performance compared to the activated carbon and pristine NiO. The result shows that the AuNP@PC@NiO-x composites have the highest specific capacitance of 485.7 F/g at the current density of 1.0 A/g and lower charge-transfer resistance than pure NiO. Furthermore, the assembled asymmetric device (AuNP@PC@NiO-0.15/AC) demonstrated a maximum energy density of 19.22 Wh/kg at a power density of 175.2 W/kg and a better specific capacity retain of 84.2% at a current density of 1.0 A/g after 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Zhang, F. Ran, Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Adv. Func. Mater. 31, 2010041 (2021)

    Article  CAS  Google Scholar 

  2. G. Huang, Q. Geng, W. Kang, Y. Liu, Y. Li, B. Xing, Q. Liu, C. Zhang, Hierarchical porous carbon with optimized mesopore structure and nitrogen doping for supercapacitor electrodes. Microporous Mesoporous Mater. 288, 109576 (2019)

    Article  CAS  Google Scholar 

  3. X. Zhao, G. Nie, Y. Luan, X. Wang, S. Yan, Y.Z. Long, Nitrogen-doped carbon networks derived from the electrospun polyacrylonitrile@branched polyethylenimine nanofibers as flexible supercapacitor electrodes. J. Alloy. Compd. 808, 151737 (2019)

    Article  CAS  Google Scholar 

  4. L. Li, E. Liu, J. Li, Y. Yang, H. Shen, Z. Huang, X. Xiang, W. Li, A doped activated carbon prepared from polyaniline for high performance supercapacitors. J. Power Sources 195, 1516–1521 (2010)

    Article  CAS  Google Scholar 

  5. B.H. Kim, Supercapacitive properties of nanoporous carbon nanofibers developed from polyacrylonitrile and tetraethyl orthosilicate. J. Electroanal. Chem. 734, 84–89 (2014)

    Article  CAS  Google Scholar 

  6. X. Yang, D. Wu, X. Chen, R. Fu, Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J. Phys. Chem. 114, 8581–8586 (2010)

    CAS  Google Scholar 

  7. Y. Lei, R. Huang, L. Guo, H. Xie, D. Zhang, M. Li, Effect of activating agents on the structure and capacitance performance of tofu derived porous carbon. Mater. Electron. 30, 10274–10283 (2019)

    Article  CAS  Google Scholar 

  8. K. Wang, S. Gao, Z. Du, A. Yuan, W. Lu, L. Chen, MnO2-carbon nanotube composite for high-areal-density supercapacitors with high rate performance. J. Power Sources 305, 30–36 (2016)

    Article  CAS  Google Scholar 

  9. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010)

    Article  CAS  Google Scholar 

  10. G. He, Y. Song, S. Chen, L. Wang, materials Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials. J. Mater. Sci. 53, 1–10 (2018)

    Article  Google Scholar 

  11. P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C.P. Wong, A. Umar, Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor. Nanoscale 6, 12120–12129 (2014)

    Article  CAS  Google Scholar 

  12. G. Zu, J. Shen, Z. Zhang, B. Zhou, X. Wang, G. Wu, Y. Zhang, Homogeneous deposition of Ni(OH)2 onto cellulose-derived carbon aerogels for low-cost energy storage electrodes. RSC Adv. 7, 10583–10591 (2017)

    Article  CAS  Google Scholar 

  13. Y. Tan, Y. Liu, L. Kong, L. Kang, F. Ran, Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method. J. Power Sources 363, 1–8 (2017)

    Article  CAS  Google Scholar 

  14. X. Zhang, Y. Xu, M. Yang, Y. Qi, A hierarchical MoO2/Au/MnO2 heterostructure with enhanced electrochemical performance for application as supercapacitor. J. Inorg. Chem. 22, 3764–3768 (2015)

    Google Scholar 

  15. Y. Liu, Q. Wu, L. Liu, P. Manasa, L. Kang, F. Ran, Vanadium nitride for aqueous supercapacitors: a topic review. J. Mater. Chem. A 8, 8218–8233 (2020)

    Article  CAS  Google Scholar 

  16. A. Manohar, J. Park, D.D. Geleta, C. Krishnamoorthi, R. Thangam, H. Kang, J. Lee, Synthesis and characterization of ZnO nanoparticles for photocatalysis, antibacterial and cytotoxicity in kidney cancer (A498) cell lines. J. Alloy. Compd. 874, 159868 (2021)

    Article  CAS  Google Scholar 

  17. A. Manohar, C. Krishnamoorthi, K.C.B. Naidu, B.P. Narasaiah, Dielectric, magnetic hyperthermia and photocatalytic properties of Mg.Zn.FeO nanocrystals. Appl. Phys. A 56, 1–28 (2020)

    Google Scholar 

  18. W. Zhang, Y. Yang, M. Ravi, L. Kong, L. Kang, F. Ran, Interconnected porous composites electrode materials of Carbon@Vanadium nitride by directly absorbing VO3-. Electrochim. Acta 306, 113–121 (2019)

    Article  CAS  Google Scholar 

  19. X. Han, S. Liu, Y. Yuan, Y. Wang, L. Hu, Experimental study on synthesis and microstructure of poly (p-phenylenediamine)/graphene oxide/Au and its performance in supercapacitor. J. Alloy. Compd. 543, 200–205 (2012)

    Article  CAS  Google Scholar 

  20. Y. Tan, Y. Zhang, L. Kong, L. Kang, F. Ran, Nano-Au@PANI core–shell nanoparticles via in-situ polymerization as electrode for supercapacitor. J. Alloy. Compd. 722, 1–7 (2017)

    Article  CAS  Google Scholar 

  21. A. Ismail, M. Albashir, W. Shang, M.K. Hadi, J. Zhang, T. Zhang, F. Ran, Straightforward solution polymerization synthesis of porous Carbon@Gold nanoparticles electrode for high-performance supercapacitor. J. Energy Storage 33, 102041 (2021)

    Article  Google Scholar 

  22. T. Yumak, D. Bragg, E.M. Sabolsky, Effect of synthesis methods on the surface and electrochemical characteristics of metal oxide/activated carbon composites for supercapacitor applications. Appl. Surf. Sci. 469, 983–993 (2019)

    Article  CAS  Google Scholar 

  23. S. Xiong, S. Jiang, J. Wang, H. Lin, M. Lin, S. Weng, S. Liu, Y. Jiao, Y. Xu, J. Chen, A high-performance hybrid supercapacitor with NiO derived NiO@Ni-MOF composite electrodes. Electrochim Acta 340, 135956 (2020)

    Article  CAS  Google Scholar 

  24. J.W. Lee, J.M. Ko, J.D. Kim, Hierarchical microspheres based on α-Ni(OH)2 nanosheets intercalated with different anions: Synthesis, anion exchange, and effect of intercalated anions on electrochemical capacitance. J. Phys. Chem. C 115, 19445–19454 (2011)

    Article  CAS  Google Scholar 

  25. J. Li, S. Qiu, B. Liu, H. Chen, D. Xiao, H. Li, Strong interaction between polyaniline and carbon fibers for flexible supercapacitor electrode materials. J. Power Sources 483, 229219 (2021)

    Article  CAS  Google Scholar 

  26. Y. He, D. Wu, M. Zhou, H. Liu, L. Zhang, Q. Chen, B. Yao, D. Yao, D. Jiang, C. Liu, Z. Guo, Effect of MoO3/carbon nanotubes on friction and wear performance of glass fabric-reinforced epoxy composites under dry sliding. Appl. Surf. Sci. 506, 144946 (2020)

    Article  CAS  Google Scholar 

  27. Y. Yang, L. Zhao, K. Shen, Y. Liu, X. Zhao, Y. Wu, Y. Wang, F. Ran, Ultra-small vanadium nitride quantum dots embedded in porous carbon as high performance electrode materials for capacitive energy storage. J. Power Sources 333, 61–71 (2016)

    Article  CAS  Google Scholar 

  28. M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, W.S. Chiu, C.H. Chia, A review of metal oxide composite electrode materials for electrochemical capacitors. NANO 9, 1–25 (2014)

    Article  Google Scholar 

  29. A. Manohar, C. Krishnamoorthi, C. Pavithra, N. Thota, Magnetic hyperthermia and photocatalytic properties of MnFe2O4 nanoparticles synthesized by solvothermal reflux method. J. Supercond. Novel Magn. 34, 251–259 (2021)

    Article  CAS  Google Scholar 

  30. A. Manohar, K. Chintagumpala, K.H. Kim, Mixed Zn–Ni spinel ferrites: Structure, magnetic hyperthermia and photocatalytic properties. Ceram. Int. 47, 7052–7061 (2021)

    Article  CAS  Google Scholar 

  31. D. Deng, B.S. Kim, M. Gopiraman, I.S. Kim, Needle-like MnO2/activated carbon nanocomposites derived from human hair as versatile electrode materials for supercapacitors. RSC Adv. 5, 81492–81498 (2015)

    Article  CAS  Google Scholar 

  32. S.V.P. Vattikuti, B.P. Reddy, C. Byon, J. Shim, Carbon/CuO nanosphere-anchored g-C3N4 nanosheets as ternary electrode material for supercapacitors. J. Solid State Chem. 262, 106–111 (2018)

    Article  CAS  Google Scholar 

  33. Y. Xie, C. Yang, P. Chen, D. Yuan, K. Guo, MnO2-decorated hierarchical porous carbon composites for high-performance asymmetric supercapacitors. J. Power Sources 425, 1–9 (2019)

    Article  CAS  Google Scholar 

  34. M. Liu, X. Wang, D. Zhu, L. Li, H. Duan, Z. Xu, Z. Wang, L. Gan, Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage. J. Power Sources 425, 1–9 (2019)

    Google Scholar 

  35. J. Hu, P. Yang, T. Nie, S. Liu, H. Ni, J. Shi, Facile synthesis of NiO/nitrogen-doped reduced graphene oxide nanocomposites for the application in supercapacitors. Russ. J. Phys. Chem. A 93, 895–901 (2019)

    Article  Google Scholar 

  36. J.P. Cao, S. He, Y. Wu, X.Y. Zhao, X.Y. Wei, T. Takarada, Synthesis of NiO/activated carbon composites and their application as electrode materials for capacitors. Int. J. Electrochem. Sci. 12, 2704–2718 (2017)

    Article  CAS  Google Scholar 

  37. H. Ma, Z. Chen, X. Gao, W. Liu, H. Zhu, 3D hierarchically gold-nanoparticle-decorated porous carbon for high-performance supercapacitors. Sci. Rep. 9, 1–10 (2019)

    Article  Google Scholar 

  38. W. Shang, Y. Tan, L. Kong, F. Ran, Fundamental triangular interaction of electron trajectory deviation and P–N junction to promote redox reactions for the high-energy-density electrode. ACS Appl. Mater. Interfaces 12, 29404–29413 (2020)

    CAS  Google Scholar 

  39. X. Liu, J. Liu, X. Sun, NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors. J. Mater. Chem. A 3, 13900–13905 (2015)

    Article  CAS  Google Scholar 

  40. L. Shen, Q. Che, H. Li, X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv. Func. Mater. 24, 2630–2637 (2014)

    Article  CAS  Google Scholar 

  41. J. Zhao, Z. Li, M. Zhang, A. Meng, Q. Li, Direct growth of ultrathin NiCo2O4/NiO nanosheets on SiC nanowires as a free-standing advanced electrode for high-performance asymmetric supercapacitors. ACS Sustain. Chem. Eng. 4, 3598–3608 (2016)

    Article  CAS  Google Scholar 

  42. Y. Huang, X. Chen, K. Zhang, X. Feng, Preparation of graphene supported flower-like porous 3D ZnO-NiO ternary composites for high capacity anode materials for Li-ion batteries. Ceram. Int. 41, 13532–13540 (2015)

    Article  CAS  Google Scholar 

  43. X. Chen, X. Wang, F. Liu, X. Song, H. Cui, Fabrication of NiO–ZnO-modified g-C3N4 hierarchical composites for high-performance supercapacitors. Vacuum 178, 109453 (2020)

    Article  CAS  Google Scholar 

  44. L. Jiang, L. Mi, K. Wang, Y. Wu, Y. Li, A. Liu, Y. Zhang, Z. Hu, S. Liu, Promoting the electrochemical performances by chemical depositing of gold nanoparticles inside pores of 3D nitrogen-doped carbon nanocages. ACS Appl. Mater. Interfaces 9, 31968–31976 (2017)

    Article  CAS  Google Scholar 

  45. T. Di, B. Zhu, B. Cheng, J. Yu, J. Xu, A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J. Catal. 352, 532–541 (2017)

    Article  CAS  Google Scholar 

  46. Y. Wei, F. Yan, X. Tang, Y. Luo, M. Zhang, W. Wei, L. Chen, Solvent-controlled synthesis of NiO-CoO/carbon fiber nanobrushes with different densities and their excellent properties for lithium ion storage. ACS Appl. Mater. Interfaces 7, 21703–21711 (2015)

    Article  CAS  Google Scholar 

  47. K.S. Lee, M.S. Park, J.D. Kim, Nitrogen doped activated carbon with nickel oxide for high specific capacitance as supercapacitor electrodes. Colloids Surf. A 533, 323–329 (2017)

    Article  CAS  Google Scholar 

  48. A.Q. Li, C. Lu, D. Xiao, H. Zhang, β-Ni(OH)2 nanosheet arrays grown on biomass-derived hollow carbon microtube for high-performance asymmetric supercapacitor. ChemElectroChem 9, 1279–1287 (2018)

    Article  CAS  Google Scholar 

  49. A.D. Su, X. Zhang, A. Rinaldi, S.T. Nguyen, H. Liu, Z. Lei, L. Lu, H.M. Duong, Hierarchical porous nickel oxide-carbon nanotubes as advanced pseudocapacitor materials for supercapacitors. Chem. Phys. Lett. 561–562, 68–73 (2013)

    Article  Google Scholar 

  50. M.S. Kolathodi, M. Palei, T.S. Natarajan, Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. J. Mater. Chem. A 3, 7513–7522 (2015)

    Article  CAS  Google Scholar 

  51. J. Xu, L. Li, F. He, R. Lv, P. Yang, A Novel double-shelled C@NiO hollow microsphere: Synthesis and application for electrochemical capacitor. Electrochim Acta 148, 211–219 (2014)

    Article  CAS  Google Scholar 

  52. H. Tang, Y. Dong, F. Liu, Facile synthesis of nickel–cobalt binary oxides with controllable morphology as high-performance electrode materials for asymmetric charge storage device. J. Mater. Sci. 32, 19742–19753 (2021)

    CAS  Google Scholar 

  53. L. Zhang, P. Cai, Z. Wei, T. Liu, J. Yu, A.A. Al-Ghamdi, S. Wageh, Synthesis of reduced graphene oxide supported nickel–cobalt-layered double hydroxide nanosheets for supercapacitors. J. Colloid Interface Sci. 588, 637–645 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 51763014 and 52073133), Joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals (Grant No. 18LHPY002), and the Program for Hongliu Distinguished Young Scholars in Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fen Ran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4343 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albashir, A.I.M., Zhang, Q., Hadi, M.K. et al. Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor. J Mater Sci: Mater Electron 32, 28480–28493 (2021). https://doi.org/10.1007/s10854-021-07229-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07229-y

Navigation