Skip to main content
Log in

Au nanoparticles decorated brookite-anatase nanowires for efficient photo-oxidation of aqueous resorcinol

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple photoreduction method was used to deposit Au nanoparticles (Au NPs) at different loadings (0.1–2 Au%) into mixed phase brookite-anatase titanium dioxide (TiO2) nanowires (NWs). X-ray diffraction (XRD) verified that the Au/TiO2 NWs were composed of a mixture of brookite (84.24%) and anatase (15.76%); while transmission electron microscopy (TEM) showed a uniform dispersion of 5- to 10-nm Au NPs over the TiO2 NWs. The photocatalytic performance of the synthesized Au/TiO2 NWs was evaluated for the degradation of resorcinol under UVA illumination. The 0.1% Au/TiO2 NWs photocatalyst offered the best photocatalytic efficiency for resorcinol degradation among the synthesized samples, with the rate, constantly increasing from 0.0014 to 0.003 min−1 after adding 0.1% Au into TiO2 NWs. At Au higher loadings, the rate decreased (0.0005 min−1 for 2% Au/TiO2 photocatalyst. The enhanced activity of the 0.1% Au/TiO2 NWs sample could be ascribed to the effective electron–hole separation at brookite/anatase phase junctions. The Au/TiO2 NWs has maintained good activity over five catalytic test cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.A. Ismail, D.W. Bahnemann, Mesoporous titania photocatalysts: preparation, characterization, and reaction mechanisms. J. Mater. Chem. 211, 1686–11707 (2011)

    Google Scholar 

  2. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. NanoLett. 11, 3026–3033 (2011)

    Article  CAS  Google Scholar 

  3. I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. NanoLett. 11, 4978–4984 (2011)

    Article  CAS  Google Scholar 

  4. T.A. Kandiel, A.A. Ismail, D.W. Bahnemann, Mesoporous TiO2 nanostructures: a route to minimize Pt loading on titania photocatalysts for hydrogen production. Phys. Chem. Chem. Phys 12, 20155–20161 (2011)

    Article  CAS  Google Scholar 

  5. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J. Clean. Prod. 20, 121725 (2020)

    Article  CAS  Google Scholar 

  6. T.M.S. Khedr, M. El-Sheikh, A.A. Ismail, D.W. Bahnemann, Highly efficient solar light-assisted TiO2 nanocrystalline for degradation of ibuprofen drug. Opt. Mater. 88, 117–127 (2019)

    Article  CAS  Google Scholar 

  7. O. Kruse, J. Rupprecht, J.H. Mussgnug, G.C. Dismukes, B. Hankamer, Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem. Photobiol. Sci. 4, 957–969 (2005)

    Article  CAS  Google Scholar 

  8. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147, 1–59 (2009)

    Article  CAS  Google Scholar 

  9. R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49, 741–772 (2011)

    Article  CAS  Google Scholar 

  10. A.A. Ismail, L. Robben, D.W. Bahnemann, tudy of the efficiency of UV and visible-Light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites. ChemPhysChem 12, 982–991 (2011s)

    Article  CAS  Google Scholar 

  11. A.A. Ismail, D.W. Bahnemann, S.A. Al-Sayari, Synthesis and photocatalytic properties of nanocrystalline Au, Pd and Pt photodeposited onto mesoporous RuO2-TiO2 nanocomposites. Appl. Catal. A 431–432, 62–68 (2012)

    Article  CAS  Google Scholar 

  12. M.H.H. Mahamoud, A.A. Ismail, M.S.S. Sanad, Developing a cost-effective synthesis of iron oxide doped titania photocatalysts loaded with palladium, platinum or silver nanoparticles. Chem. Eng. J. 187, 96–103 (2012)

    Article  CAS  Google Scholar 

  13. M. Xu, P. Da, H. Wu, D. Zhao, G. Zheng, Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. NanoLetters 12, 1503–1508 (2012)

    Article  CAS  Google Scholar 

  14. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    Article  CAS  Google Scholar 

  15. S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243–2245 (2002)

    Article  CAS  Google Scholar 

  16. J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, S. Yang, All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5, 3245–3248 (2013)

    Article  CAS  Google Scholar 

  17. H. Wang, G. Wang, Y. Ling, M. Lepert, C. Wang, J.Z. Zhang, Y. Li, Photoelectrochemical study of oxygen-deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale 4, 1463–1466 (2012)

    Article  CAS  Google Scholar 

  18. J. Hensel, G. Wang, Y. Li, J.Z. Zhang, Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. NanoLetters 10, 478–483 (2010)

    Article  CAS  Google Scholar 

  19. C. Cheng, S.K. Karuturi, L. Liu, J. Liu, H. Li, L.T. Su, A.I. Tok, H.J. Fan, Quantum-dot- sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Small 8, 37–42 (2012)

    Article  CAS  Google Scholar 

  20. R.S. Selinsky, Q. Ding, M.S. Faber, J.C. Wright, S. Jin, Quantum dot nanoscale heterostructures for solar energy conversion. Chem. Soc. Rev. 42, 2963–2985 (2013)

    Article  CAS  Google Scholar 

  21. A.A. Ismail, D.W. Bahnemann, A metal-free dye-sensitized titania mesoporous films for visible-light indoor air oxidation. Chemsuschem 3, 1057–1062 (2010)

    Article  CAS  Google Scholar 

  22. A.L. Linsebigler, G.Q. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)

    Article  CAS  Google Scholar 

  23. A. Pougin, G. Dodekatos, M. Dilla, H. Teysez, J. Strunk, Au@TiO2 core–shell composites for the photocatalytic reduction of CO2. Chem. Eur. J. 24, 12416–12425 (2018)

    Article  CAS  Google Scholar 

  24. P.V. Kamat, Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834–2860 (2007)

    Article  CAS  Google Scholar 

  25. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  Google Scholar 

  26. F.E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35–54 (2008)

    Article  CAS  Google Scholar 

  27. X. Li, J.G. Yu, J.X. Low, Y.P. Fang, J. Xiao, X.B. Chen, Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485–2534 (2015)

    Article  CAS  Google Scholar 

  28. J. Yang, D. Wang, H. Han, C. Li, Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013)

    Article  CAS  Google Scholar 

  29. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014)

    Article  CAS  Google Scholar 

  30. X. Wang, R. Long, D. Liu, D. Yang, C. Wang, Y. Xiong, Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays. Nano Energy 24, 87–93 (2016)

    Article  CAS  Google Scholar 

  31. A. Leken, M. Muhler, J. Strunk, On the role of gold nanoparticles in the selective photooxidation of 2-propanol over Au/TiO2. Phys. Chem. Chem. Phys. 17, 10391–10397 (2015)

    Article  CAS  Google Scholar 

  32. C. Feng, Z. Yu, H. Liu, K. Yuan, X. Wang, L. Zhu, G. Zhang, D. Xu, Enhanced photocatalytic performance of Au/TiO2 nanofibers by precisely manipulating the dosage of uniform-sized Au nanoparticles. Appl. Phys. A 123, 519 (2017)

    Article  CAS  Google Scholar 

  33. C. Wang, D. Astruc, Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem. Soc. Rev. 43, 7188–7216 (2014)

    Article  CAS  Google Scholar 

  34. J. Lu, P. Zhang, A. Li, F. Su, T. Wang, Y. Liu, J. Gong, Mesoporous anatase TiO2 nanocups with plasmonic metal decoration for highly active visible-light photocatalysis. Chem. Commun. 49, 5817–5819 (2013)

    Article  CAS  Google Scholar 

  35. Z. Zhang, A. Li, S. Cao, M. Bosman, S. Li, C. Xue, Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt-decorated TiO2 nanofibers. Nanoscale 6, 5217–5222 (2014)

    Article  CAS  Google Scholar 

  36. Q. Zhang, R. Li, Z. Li, A. Li, S. Wang, Z. Liang, S. Liao, C. Li, The dependence of photocatalytic activity on the selective and nonselective deposition of noble metal cocatalysts on the facets of rutile TiO2. J. Catal. 337, 36–44 (2016)

    Article  CAS  Google Scholar 

  37. C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014)

    Article  CAS  Google Scholar 

  38. M. Tahir, B. Tahir, N.A.S. Amin, Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation. Appl. Surf. Sci. 356, 1289–1299 (2015)

    Article  CAS  Google Scholar 

  39. H.M.M.M. Arachchige, D. Zappa, N. Poli, N. Gunawardhana, N.H. Attanayake, E. Comini, Seed-assisted growth of TiO2 nanowires by thermal oxidation for chemical gas sensing. Nanomaterials 10, 935 (2020)

    Article  CAS  Google Scholar 

  40. M. Alvaro, B. Cojocaru, A.A. Ismail, N. Petrea, B. Ferrer, F.A. Harraz, V.I. Parvulescu, H. Garcia, Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent SOMAN. Appl. Catal. B 99, 191–197 (2010)

    Article  CAS  Google Scholar 

  41. A.A. Ismail, D.W. Bahnemann, I. Bannat, M. Wark, Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies. J. Chem. Phys. C 113, 7429–7435 (2009)

    Article  CAS  Google Scholar 

  42. L.A. Al-Hajji, A.A. Ismail, A. Al-Hazza, M. Alsaidi, S.A. Ahmed, F. Almutawa, A. Bumajdad, Impact of calcination of hydrothermally synthesized TiO2 nanowires on their photocatalytic efficiency. J. Mol. Struct. 1200, 127153 (2020)

    Article  CAS  Google Scholar 

  43. A.A. Ismail, A. Hakki, D.W. Bahnemann, Mesostructure Au/TiO2 nanocomposites for high efficient catalytic reduction of p-nitrophenol. J. Mol. Catal. A 358, 145–151 (2012)

    Article  CAS  Google Scholar 

  44. Y. Wen, B.T. Liu, W. Zeng, Y.H. Wang, Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes. Nanoscale 5, 9739–9746 (2013)

    Article  CAS  Google Scholar 

  45. Y.F. Zhu, J. Zhang, L. Xu, Y. Guo, X.-P. Wang, R.-G. Du, C.-J. Lin, Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films. Phys. Chem. Chem. Phys. 15, 4041–4048 (2013)

    Article  CAS  Google Scholar 

  46. F. Su, T. Wang, R. Lv, J. Zhang, P. Zhang, J. Lu, J. Gong, Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale 5, 9001–9009 (2013)

    Article  CAS  Google Scholar 

  47. X. Zhang, Y.Z. Liu, H. Kang, 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical Water Splitting. ACS Appl. Mat. Inter. 6, 4480–4489 (2014)

    Article  CAS  Google Scholar 

  48. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  49. Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. NanoLett. 13, 14–20 (2013)

    Article  CAS  Google Scholar 

  50. T. Kiyonaga, M. Fujii, T. Akita, H. Kobayashic, H. Tada, Size-dependence of Fermi energy of gold nanoparticles loaded on titanium(iv) dioxide at photostationary state. Phys. Chem. Chem. Phys. 10, 6553 (2008)

    Article  CAS  Google Scholar 

  51. M. Haruta, Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153 (1997)

    Article  CAS  Google Scholar 

  52. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. B 112, 269–278 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support received from the Kuwait Foundation for the Advancement of Sciences (KFAS) related to the Project EA071C under a contract number: PR17-12SC-01 is hereby acknowledged. Also, Kuwait Institute for Scientific Research (KISR) is extended the appreciation for the instrumental facilities. The authors likewise extend gratitude to the Kuwait University Research Administration for the use of RSPU facilities No. GS 01/01, GS 01/05 and the Nanoscopy Science Center for carrying out the transmission electron microscopy (TEM) analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel A. Ismail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 12496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hajji, L.A., Ismail, A.A., Bumajdad, A. et al. Au nanoparticles decorated brookite-anatase nanowires for efficient photo-oxidation of aqueous resorcinol. J Mater Sci: Mater Electron 32, 19764–19777 (2021). https://doi.org/10.1007/s10854-021-06501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06501-5

Navigation