Skip to main content
Log in

Characterization of synthesized xBaO-(40-x)Li2O-60B2O3 glass system: a multi-dimensional research on optical and physical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study aimed to investigate the impact of barium oxide and lithium oxide substitution on optical and gamma-ray attenuation properties of some borate glasses. Accordingly, nine glass samples with a chemical composition of xBaO·(40–x)Li2O·60B2O3 (where x = 0 mol.%, 5 mol.%, 10 mol.%, 15 mol.%, 20 mol.%, 25 mol.%, 30 mol.%, 35 mol.% and 40 mol.%) were investigated in terms of their optical and gamma-ray attenuation properties. Our findings indicate that increasing the BaO content increases the density and molar volume. The energy gap, linear refractive index, and Urbach energy are all stated to be constant as the amount of BaO in the glass structure increases. These trends are due to the formation of BO4 and NBOs units by adding BaO and Li2O performed at the same rate. The optical basicity varied between 0.73 and 0.92. Furthermore, Monte Carlo N-Particle extended (MCNPX) and Phy-X PSD software were used to estimate the radiation shielding capacity of prepared glasses within an energy photon range of 0.015–15 MeV. The results showed that BaO additive enhances the radiation protecting capacity of glasses, and BLB40 sample that had 40 BaO mol.% achieved the highest gamma-ray shielding performance. It can be concluded that there is a direct impact of increasing BaO reinforcement in borate glasses in terms of gamma ray attenuation competencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. G. Kilic, E. Ilik, S.A.M. Issa, H.O. Tekin. Synthesis and structural, optical, physical properties of Gadolinium (III) oxide reinforced TeO2-B2O3-(20-x) Li2O-xGd2O3 glass system. J. Alloys Comp. 877, 160302 (2021). https://doi.org/10.1016/j.jallcom.2021.160302

  2. M.S. Al-Buriahi, A.S. Abouhaswa, H.O. Tekin, C. Sriwunkum, F.I. El-Agawany, T. Nutaro, E. Kavaz, Y.S. Rammah. Structure, optical, gamma-ray and neutron shielding properties of NiO doped B2O3–BaCO3–Li2O3 glass systems. Ceramics Int. 46 (2020), 1711–1721. https://doi.org/10.1016/j.ceramint.2019.09.144

  3. S. Singh, A. Kumar, D. Singh, K. S. Thind, G. S. Mudahar. Barium-borate-flyash glasses: as radiation shielding materials. Nucl. Inst. Method. Phys. Res. Sect. B Beam Interact. with Mater. Atoms 266(1), 140–146 (2008). https://doi.org/10.1016/j.nimb.2007.10.018.

  4. C.-M. Lee, Y.H. Lee, K.J. Lee, Cracking effect on gamma-ray shielding performance in concrete structure. Prog. Nucl. Energy 49(4), 303–312 (2007). https://doi.org/10.1016/j.pnucene.2007.01.006

    Article  Google Scholar 

  5. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates. Cem. Concr. Compos. 28(2), 153–157 (2006). https://doi.org/10.1016/j.cemconcomp.2005.09.006

    Article  CAS  Google Scholar 

  6. S.A.M. Issa, A.M.A. Mostafa, Effect of Bi2O3 in borate-tellurite-silicate glass system for development of gamma-rays shielding materials. J. Alloys Compd. 695, 302–310 (2017)

    Article  CAS  Google Scholar 

  7. M. Rashad, A.M. Ali, M.I. Sayyed, H.H. Somaily, H. Algarni, Y.S. Rammah, Radiation attenuation and optical features of lithium borate glasses containing barium: B2O3.Li2O.BaO. Ceram. Int. 46(13), 21000–21007 (2020). https://doi.org/10.1016/j.ceramint.2020.05.165

    Article  CAS  Google Scholar 

  8. A.M.A. Mostafa et al., PbO–Sb2O3–B2O3–CuO glassy system: Evaluation of optical, gamma and neutron shielding properties. Mater. Chem. Phys. 258, 123937 (2021). https://doi.org/10.1016/j.matchemphys.2020.123937

    Article  CAS  Google Scholar 

  9. M.I. Sayyed, B.O. Elbashir, H.O. Tekin, E.E. Altunsoy, D.K. Gaikwad, Radiation shielding properties of pentaternary borate glasses using MCNPX code. J. Phys. Chem. Solids 121, 17–21 (2018). https://doi.org/10.1016/j.jpcs.2018.05.009

    Article  CAS  Google Scholar 

  10. M. Bengisu. Borate glasses for scientific and industrial applications: a review. J. Mater. Sci. 51(5). Springer New York LLC, pp. 2199–2242 (2016). https://doi.org/10.1007/s10853-015-9537-4.

  11. Q. Zhang, L. Fang, J. Shen, M.J. Pascual, T. Zhang, Tuning the interfacial reaction between bismuth-containing sealing glasses and Cr-containing interconnect: effect of ZnO. J. Am. Ceram. Soc. 98(12), 3797–3806 (2015). https://doi.org/10.1111/jace.13779

    Article  CAS  Google Scholar 

  12. X. Tiefeng, C. Feifei, D. Shixun, N. Qiuhua, S. Xiang, W. Xunsi, Third-order optical nonlinear characterizations of Bi2O3-B2O3-TiO2 ternary glasses. Phys. B Condens. Matter 404(14–15), 2012–2015 (2009). https://doi.org/10.1016/j.physb.2009.03.031

    Article  CAS  Google Scholar 

  13. H. Doweidar, G. El-Damrawi, E.F. El Agammy, FTIR investigation and mixed cation effect of Li2O–BaO–B2O3 glasses. Mater. Chem. Phys. 207, 259–270 (2018)

    Article  CAS  Google Scholar 

  14. H. Doweidar, G. El-Damrawi, E.F.E. Agammy, Structural correlations in BaO-PbO-B2O3 glasses as inferred from FTIR spectra. Vib. Spectrosc. 73, 90–96 (2014). https://doi.org/10.1016/j.vibspec.2014.05.003

    Article  CAS  Google Scholar 

  15. M.H. Kharita, S. Yousef, M. AlNassar, Review on the addition of boron compounds to radiation shielding concrete. Prog. Nucl. Energy 53, 2 (2011). https://doi.org/10.1016/j.pnucene.2010.09.012

    Article  CAS  Google Scholar 

  16. H.O. Tekin, E.E. Altunsoy, E. Kavaz, M.I. Sayyed, O. Agar, M. Kamislioglu, Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Results in Physics 12, 12 (2019). https://doi.org/10.1016/j.rinp.2019.01.060

    Article  Google Scholar 

  17. I. Akkurt, A. Calik, H. Akyildirim, B. Mevi. The effect of boronizing on the radiation shielding properties of steel. Verlag der Zeitschrift für Naturforschung 63a, 445 (2008). https://doi.org/10.1515/zna-2008-7-81010.1515/zna-2008-7-810

  18. E. A. Davis, Nf. Mott. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22(179), 903–922 (1970).

  19. W.S. AbuShanab, E.B. Moustafa, A.H. Hammad, R.M. Ramadan, A.R. Wassel, Enhancement the structural, optical and nonlinear optical properties of cadmium phosphate glasses by nickel ions. J. Mater. Sci. Mater. Electron. 30(19), 18058–18064 (2019). https://doi.org/10.1007/s10854-019-02158-3

    Article  CAS  Google Scholar 

  20. E.F. El Agammy, H. Doweidar, K. El-Egili, R.M. Ramadan, Physical and optical properties of NaF–TeO2 glasses and glass–ceramics. Appl. Phys. A 127(1), 42 (2021). https://doi.org/10.1007/s00339-020-04153-6

    Article  CAS  Google Scholar 

  21. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79(3), 1736–1740 (1996). https://doi.org/10.1063/1.360962

    Article  CAS  Google Scholar 

  22. V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach. J. Solid State Chem. 163(1), 100–112 (2002). https://doi.org/10.1006/jssc.2001.9378

    Article  CAS  Google Scholar 

  23. V. Dimitrov, T. Komatsu, Relationship between optical basicity and average single bond strength of oxide glasses. Phys. Chem. Glas. 46(5), 521–529 (2005)

    CAS  Google Scholar 

  24. V. Dimitrov, T. Komatsu. Polarizability, basicity and chemical bonding of single and multicomponent oxide glasses. J. Chem. Technol. Metall. 50(4), 387–396 (2015). Accessed 27 Feb 2021. [Online]. Available: http://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=NART78468170.

  25. M. Abdel-Baki, F. El-Diasty, Role of oxygen on the optical properties of borate glass doped with ZnO. J. Solid State Chem. 184(10), 2762–2769 (2011). https://doi.org/10.1016/j.jssc.2011.08.015

    Article  CAS  Google Scholar 

  26. K.-H. Sun, Fundamental condition of glass formation. J. Am. Ceram. Soc. 30(9), 277–281 (1947). https://doi.org/10.1111/j.1151-2916.1947.tb19654.x

    Article  CAS  Google Scholar 

  27. J.A. Duffy, Electronic polarisability and related properties of the oxide ion. Phys. Chem. Glas. 30(1), 1–4 (1989)

    CAS  Google Scholar 

  28. V. Dimitrov, T. Komatsu. Optical basicity and chemical bonding of vanadate glasses. Phys. Chem. Glas. Eur. J. Glas. Sci. Technology Part B. 47(6), 638–646 (2006).

  29. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X / PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  CAS  Google Scholar 

  30. H.O. Tekin, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, O. Agar, T.T. Erguzel, M.I. Sayyed, An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide substituted bioactive glasses. Ceram. Int. 45, 9934–9949 (2019). https://doi.org/10.1016/j.ceramint.2019.02.036

    Article  CAS  Google Scholar 

  31. A. El-Denglawey, H.M.H. Zakaly, K. Alshammari, S.A.M. Issa, H.O. Tekin, Y.B. Saddeek. Prediction of mechanical and radiationparameters of glasses with high Bi2O3 concentration. Results Phys. 21, 103839 (2021). https://doi.org/10.1016/j.rinp.2021.103839

  32. M.I. Sayyed, S.A.M. Issa, H.O. Tekin, Y.B. Saddeek. Comparative study of gamma ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. Phys. 217, 11–22 (2018). https://doi.org/10.1016/j.matchemphys.2018.06.034

  33. M.S. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan. Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceramics Int 46(11), 19078–19083 (2020).https://doi.org/10.1016/j.ceramint.2020.04.240

  34. A.S. Abouhaswa, M.H.A. Mhareb, A. Alalawi, M.S. Al-Buriahi, Physical, structural, optical, and radiation shielding properties of B2O3-20Bi2O3-20Na2O2-Sb2O3 glasses: Role of Sb2O3. J. Non-Cryst. Solids 543, 120130 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120130

    Article  CAS  Google Scholar 

  35. M.S. Al-Buriahi, B. Tonguç, U. Perişanoğlu, E. Kavaz, The impact of Gd2O3 on nuclear safety proficiencies of TeO2–ZnO–Nb2O5 glasses: a GEANT4 Monte Carlo study. Ceram. Int. 46(15), 23347–23356 (2020). https://doi.org/10.1016/j.ceramint.2020.03.110

    Article  CAS  Google Scholar 

  36. S. Stalin, D.K. Gaikwad, M.S. Al-Buriahi, C. Srinivasu, S.A. Ahmed, H. O. Tekin, S. Rahman. Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses. Ceramics Int. 47, 5286–5299 (2021). https://doi.org/10.1016/j.ceramint.2020.10.109

  37. G. Lakshminarayana, A. Kumar, H.O. Tekin, S.A.M. Issa, M.S. Al-Buriahi, M.G. Dong, D-E. Lee, J. Yoon, T. Park. In-depth survey of nuclear radiation attenuation efficacies for high density bismuth lead borate glass system. Results. Phys. 23, 104030 (2021). https://doi.org/10.1016/j.rinp.2021.104030

  38. G. Lakshminarayana, Y. Elmahroug, A. Kumar, H.O. Tekin, N. Rekik, M. Dong, D-E. Lee, J. Yoon, Park T. Detailed inspection of γ-ray, fast and thermal neutrons shielding competence of calcium oxide or strontium oxide comprising bismuth borate glasses. Materials. 14(9), 2265 (2021). https://doi.org/10.3390/ma14092265

  39. Iskender Akkurt, H.O. Tekin. Radiological parameters for bismuth oxide glasses using Phy-X/PSD software. Emerg. Mater. Res. 9(3). https://doi.org/10.1680/jemmr.20.00209

  40. Y.S. Rammah, A. Kumar, K. A. Mahmoud, R. El-Mallawany, F.I El-Agawany, G. Susoy, H.O. Tekin. SnO reinforced silicate glasses and utilization in gamma radiation shielding applications. Emerg. Mater. Res. 9(3). https://doi.org/10.1680/jemmr.20.00150

  41. H.O. Tekin, S.A.M. Issa, K.A. Mahmoud, F.I. El-Agawany, Y.S. Rammah, G. Susoy, M.S. Al-Buriahi, M.M. Abuzaid, I. Akkurt. Nuclear radiation shielding competences of barium (Ba) reinforced borosilicate glasses. Emerg. Mater. Res. 9(4), 1–12 (2020). https://doi.org/10.1680/jemmr.20.00185

  42. S.A.M. Issa, H.O. Tekin. The multiple characterization of gamma, neutron and proton shielding performances of xPbO-(99-x)B2O3–Sm2O3 glass system. Ceramics Int. 45, 23561–23571 (2019). https://doi.org/10.1016/j.ceramint.2019.08.065

  43. H.O. Tekin, S. Alomairy, M.S. Al-Buriahi, Y. Rammah. Linear/nonlinear optical parameters along with photon attenuation effectiveness of Dy3+ ions doped zinc-aluminoborosilicate glasses. Physica Scripta 96, 065704 (2021). https://doi.org/10.1088/1402-4896/abf452

  44. A. Levet, E. Kavaz, Y. Özdemir, An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys. J. Alloys Compd. 819, 152946 (2020). https://doi.org/10.1016/j.jallcom.2019.152946

    Article  CAS  Google Scholar 

  45. V.P. Singh, N.M. Badiger, γ-ray interaction characteristics for some boron containing materials. Vacuum 113, 24–27 (2015). https://doi.org/10.1016/j.vacuum.2014.11.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. F. El Agammy or H. O. Tekin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafa, A.M.A., Agammy, E.F.E., Al-Zaibani, M. et al. Characterization of synthesized xBaO-(40-x)Li2O-60B2O3 glass system: a multi-dimensional research on optical and physical properties. J Mater Sci: Mater Electron 32, 16990–17008 (2021). https://doi.org/10.1007/s10854-021-06265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06265-y

Navigation