Skip to main content
Log in

A novel 0.9KNbO3–0.1BaNi0.5Nb0.5O3(KBNNO):Ag2O/Bi2O3 heterojunction photocatalyst: synthesis, characterization and excellent photocatalytic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 04 June 2021

This article has been updated

Abstract

In the present study, first 0.9KNbO3–0.1BaNi0.5Nb0.5O3(KBNNO) nanosized powder was synthesized by solution combustion method and then a series of KBNNO:Ag2O and KBNNO:Bi2O3 composites with varying weight ratios (75:25, 50:50, and 25:75) were prepared by a simple precipitation technique/solid-state method. Preparation method and processing temperature have significant effect on phase stability and interface formation. The structural, morphological and photoabsorption behaviour of the synthesized powders were studied systematically by XRD, TEM, XPS and UV–visible spectroscopy. The photocatalytic performance of the photocatalysts was evaluated for the degradation of rhodamine B (RhB) solution under visible light exposure. In particular, KBNNO:Ag2O composites exhibited better photodegradation of RhB. KBNNO:Ag2O (50:50) nanocomposite can completely mineralize the RhB in 25 min, whereas KBNNO:Bi2O3 (25:75) can mineralize 96% of RhB in 45 min. The rate constant (k) for dye degradation of KBNNO:Ag2O (50:50) (0.113 min−1) sample showed the highest value which was 4.71 and 5.94 times better than that of KBNNO and Ag2O under visible light irradiation. The rate constant for KBNNO:Bi2O3 (25:75) (0.048 min−1) exhibited the highest k value which is 1.94 and 3.13 times greater than that of KBNNO and Bi2O3 under similar irradiation condition. The significant absorption in visible region and reduced recombination time of charge carriers in the composite than the parent materials were responsible for excellent photocatalytic properties. The mechanism for degradation was also studied in detail. Moreover, a reasonable degradation of 95% (on an average) was observed after five cycles, suggesting a good photocatalytic stability of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Change history

References

  1. P. Nigam, G. Armour, I.M. Banat, D. Singh, R. Marchant, Bioresour. Technol. 72, 219 (2000)

    Article  CAS  Google Scholar 

  2. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000)

    Article  CAS  Google Scholar 

  3. U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170, 520 (2009)

    Article  CAS  Google Scholar 

  4. K. Wilke, H.D. Breuer, J. Photochem. Photobiol. A Chem. 121, 49 (1999)

    Article  CAS  Google Scholar 

  5. Y. Wang, R. Zhang, J. Li, L. Li, S. Lin, Nanoscale Res. Lett. 9, 1 (2014)

    Article  CAS  Google Scholar 

  6. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, Water Res. 79, 128 (2015)

    Article  CAS  Google Scholar 

  7. J. Gomes, J. Lincho, E. Domingues, R.M. Quinta-Ferreira, R.C. Martins, Water (Switzerland) 11, 373 (2019)

    CAS  Google Scholar 

  8. P. Kanhere, Z. Chen, Molecules 19, 19995 (2014)

    Article  CAS  Google Scholar 

  9. L. Fang, L. You, J.-M. Liu, Ferroelectr. Mater. Energy Appl. 65, 265 (2018)

    Article  Google Scholar 

  10. Z. Wang, J. Song, F. Gao, R. Su, D. Zhang, Y. Liu, C. Xu, X. Lou, Y. Yang, Chem. Commun. 53, 7596 (2017)

    Article  CAS  Google Scholar 

  11. N.R. Yogamalar, S. Kalpana, V. Senthil, A. Chithambararaj, Ferroelectrics for Photocatalysis (Elsevier, Amsterdam, 2018).

    Book  Google Scholar 

  12. M.R. Morris, S.R. Pendlebury, J. Hong, S. Dunn, J.R. Durrant, Adv. Mater. 28, 7123 (2016)

    Article  CAS  Google Scholar 

  13. L. Li, P.A. Salvador, G.S. Rohrer, Nanoscale 6, 24 (2014)

    Article  Google Scholar 

  14. S. Raja, R. Ramesh Babu, K. Ramamurthi, S. Moorthy, Babu, Ceram. Int. 44, 3297 (2018)

    Article  CAS  Google Scholar 

  15. F. Wang, I. Grinberg, A.M. Rappe, Appl. Phys. Lett. 104, 152903 (2014)

    Article  CAS  Google Scholar 

  16. F. Wang, I. Grinberg, A.M. Rappe, Phys. Rev. B 89, 2 (2014)

    Google Scholar 

  17. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe, Nature 503, 509 (2013)

    Article  CAS  Google Scholar 

  18. S. Abhinay, R. Mazumder, J. Solid State Chem. 289, 121362 (2020)

    Article  CAS  Google Scholar 

  19. S.P. Adhikari, A. Lachgar, J. Phys. Conf. Ser. 758, 012017 (2016)

    Article  CAS  Google Scholar 

  20. A.C. Dodd, A.J. McKinley, M. Saunders, T. Tsuzuki, J. Nanopart. Res. 8, 43 (2006)

    Article  CAS  Google Scholar 

  21. P. Wu, G. Wang, R. Chen, Y. Guo, X. Ma, D. Jiang, RSC Adv. 6, 82409 (2016)

    Article  CAS  Google Scholar 

  22. J. Tang, Y. Wang, L. Zhang, B. Song, Y. Zhang, Y. Wang, Z. Liu, Y. Sui, J. Alloys Compd. 703, 67 (2017)

    Article  CAS  Google Scholar 

  23. H. Huang, D. Li, Q. Lin, Y. Shao, W. Chen, Y. Hu, Y. Chen, X. Fu, J. Phys. Chem. C 113, 14264 (2009)

    Article  CAS  Google Scholar 

  24. H. Fan, H. Li, B. Liu, Y. Lu, T. Xie, D. Wang, ACS Appl. Mater. Interfaces 4, 4853 (2012)

    Article  CAS  Google Scholar 

  25. X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, J. Phys. Chem. C 111, 18288 (2007)

    Article  CAS  Google Scholar 

  26. Y. Cui, J. Briscoe, Y. Wang, N.V. Tarakina, S. Dunn, ACS Appl. Mater. Interfaces 9, 24518 (2017)

    Article  CAS  Google Scholar 

  27. X. Ye, S. Zhao, S. Meng, X. Fu, L. Bai, Y. Guo, X. Wang, S. Chen, Mater. Res. Bull. 94, 352 (2017)

    Article  CAS  Google Scholar 

  28. X. Lu, X.D. Ma, Q. Li, K. Dai, J. Zhang, M. Zhang, C. Cui, G. Zhu, C. Liang, J. Nanopart. Res. 21 (2019)

  29. S. Abhinay, P. Tarai, R. Mazumder, J. Mater. Sci. 55, 1904 (2019)

    Article  CAS  Google Scholar 

  30. B. Jiang, L. Jiang, X. Shi, W. Wang, G. Li, F. Zhu, D. Zhang, J. Sol-Gel. Sci. Technol. 73, 314 (2014)

    Article  CAS  Google Scholar 

  31. N. Wei, H. Cui, Q. Song, L. Zhang, X. Song, K. Wang, Y. Zhang, J. Li, J. Wen, J. Tian, Appl. Catal. B  198, 83 (2016)

    Article  CAS  Google Scholar 

  32. M. Li, H. Liu, T. Liu, Y. Qin, Mater. Charact. 124, 136 (2017)

    Article  CAS  Google Scholar 

  33. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, ACS Appl. Mater. Interfaces 2, 2385 (2010)

    Article  CAS  Google Scholar 

  34. J. Zhang, X. Liu, S. Gao, B. Huang, Y. Dai, Y. Xu, L.R. Grabstanowicz, T. Xu, Ceram. Int. 39, 1011 (2013)

    Article  CAS  Google Scholar 

  35. J. Li, X. Nie, L. Li, B. Liu, W. Yu, X. Wu, H. Xu, X. Zhao, X. Liu, Nanosci. Nanotechnol. Lett. 10, 900 (2018)

    Article  Google Scholar 

  36. M. Wu, J.M. Yan, X.W. Zhang, M. Zhao, Q. Jiang, J. Mater. Chem. A 3, 15710 (2015)

    Article  CAS  Google Scholar 

  37. H.Y. Jiang, K. Cheng, J. Lin, Phys. Chem. Chem. Phys. 14, 12114 (2012)

    Article  CAS  Google Scholar 

  38. J. Hu, H. Li, C. Huang, M. Liu, X. Qiu, Appl. Catal. B  142–143, 598 (2013)

    Article  CAS  Google Scholar 

  39. J. Li, J. Zhong, X. He, S. Huang, J. Zeng, J. He, W. Shi, Appl. Surf. Sci. 284, 527 (2013)

    Article  CAS  Google Scholar 

  40. S. Ebraheem, A. El-Saied, Mater. Sci. Appl. 04, 324 (2013)

    Google Scholar 

  41. S. Kappadan, T. Woldu, S. Thomas, N. Kalarikkal, Mater. Sci. Semicond. Process. 51, 42 (2016)

    Article  CAS  Google Scholar 

  42. R. Georgiev, B. Georgieva, M. Vasileva, P. Ivanov, T. Babeva, Adv. Condens. Matter Phys. 2015(8), 403196 (2015)

    Google Scholar 

  43. K.K. Paul, R. Ghosh, P.K. Giri, Nanotechnology 27, 1 (2016)

    Google Scholar 

  44. X.W. Yu, D. Du, G. Tang, Zhang, Chinese J. Catal. 36, 2219 (2015)

    Article  CAS  Google Scholar 

  45. T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Chem. Eng. J. 169, 126 (2011)

    Article  CAS  Google Scholar 

  46. B. Zhang, D. Zhang, Z. Xi, P. Wang, X. Pu, X. Shao, S. Yao, Sep. Purif. Technol. 178, 130 (2017)

    Article  CAS  Google Scholar 

  47. S. Yang, D. Xu, B. Chen, B. Luo, X. Yan, L. Xiao, W. Shi, Appl. Surf. Sci. 383, 214 (2016)

    Article  CAS  Google Scholar 

  48. S. Ma, J. Xue, Y. Zhou, Z. Zhang, RSC Adv. 5, 40000 (2015)

    Article  CAS  Google Scholar 

  49. M. Xu, L. Han, S. Dong, ACS Appl. Mater. Interfaces 5, 12533 (2013)

    Article  CAS  Google Scholar 

  50. H.T. Ren, S.Y. Jia, Y. Wu, S.H. Wu, T.H. Zhang, X. Han, Ind. Eng. Chem. Res. 53, 17645 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mazumder.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhinay, S., Mazumder, R. A novel 0.9KNbO3–0.1BaNi0.5Nb0.5O3(KBNNO):Ag2O/Bi2O3 heterojunction photocatalyst: synthesis, characterization and excellent photocatalytic performance. J Mater Sci: Mater Electron 32, 17061–17077 (2021). https://doi.org/10.1007/s10854-021-05982-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05982-8

Navigation