Skip to main content
Log in

Preparation and evaluation of structural, optical, dielectric and thermal characteristics of unirradiated and irradiated polyurethane/magnesium silicate composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyurethane filled with various amounts (5, 10, 15, and 20 wt%) of magnesium silicate was fabricated by the solution casting method. The structural and physical properties of PU due to the influence of adding magnesium silicate together with gamma irradiation were investigated. The structural properties of the prepared composites were investigated via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD analysis shows magnesium silicate formation in the PU matrix, which was further confirmed by the surface morphology images obtained by the SEM. Optical properties were characterized by ultraviolet–visible (UV–Vis) spectrophotometer. Refractive index dispersion was analyzed via the Wemple–Didomenico models. For both the unirradiated and irradiated composites, the ratio of carrier density to the effective mass, and the plasma frequency were calculated. Influences of magnesium silicate and gamma irradiation on these parameters as well as the dependence on the aforementioned additions were investigated. The dielectric investigation of the prepared composites reflected the increase of the dielectric constant, dielectric loss, and electrical conductivity with the addition of magnesium silicate and gamma irradiation, while it lowered with raising the applied frequency. The thermal stability of the prepared composites was investigated via thermogravimetric analysis. The thermal stability of all composites is significantly enhanced with the adding magnesium silicate and gamma irradiation. Kissinger model was applied to measure the activation energy of thermal decomposition and revealed the increasing trend of activation energy with the addition of the magnesium silicate and raising gamma absorbed dose. We believe that the outcomes of this work would provide a helpful contribution to the engineering of the components and the processes involved in the given structure presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Jiang, Z. Da, F. Qiu, D. Yang, Y. Guan, G. Cao, Opt. Mater. 75, 858–868 (2018)

    Article  CAS  Google Scholar 

  2. D.C. Joshi, S. Saxena, M. Jayakannan, ACS Appl. Polym. Mater. 1, 1866–1880 (2019)

    Article  CAS  Google Scholar 

  3. T. Cao, F. Zhao, Z. Da, F. Qiu, D. Yang, Y. Guan, G. Cao, Z. Zhao, J. Li, X. Guo, Opt. Mater. 60, 45 (2016)

    Article  CAS  Google Scholar 

  4. V. Somisetti, R. Narayan, R.V.S.N. Kothapalli, Prog. Org. Coat. 134, 91–102 (2019)

    Article  CAS  Google Scholar 

  5. F. Qiu, C. Chen, Q. Zhou, Z. Cao, G. Cao, Y. Guan, D. Yang, Opt. Mater. 36(7), 1153–1159 (2014)

    Article  CAS  Google Scholar 

  6. R. Reisfeld, T. Saraidarov, G. Panzer, V. Levchenko, M. Gaft, Opt. Mater. 34, 351–354 (2011). https://doi.org/10.1016/j.optmat.2011.04.007

    Article  CAS  Google Scholar 

  7. F.X. Qiu, C.H. Chen, Q.L. Zhou, Z.J. Cao, G.R. Cao, Y.J. Guan, D.Y. Yang, Opt. Mater. 36, 1153 (2014)

    Article  CAS  Google Scholar 

  8. I. Yilgör, E. Yilgör, G.L. Wilkes, Polymer 58, A1–A36 (2015)

    Article  Google Scholar 

  9. E. Burgaz, in Polyurethane Insulation Foams for Energy and Sustainability (Springer International Publishing, 2019), pp. 233–289

  10. E.G. Bajsić, V. Filipan, V.O. Bulatović, V. Mandić, Polym. Bull. 74, 2939–2955 (2017)

    Article  Google Scholar 

  11. G. Narayanan, V.N. Vernekar, E.L. Kuyinu, C.T. Laurencin, Adv. Drug Deliv. Rev. 107, 247–276 (2016)

    Article  CAS  Google Scholar 

  12. V.A. Demina, S.V. Krasheninnikov, A.I. Buzin, R.A. Kamyshinsky, N.V. Sadovskaya, E.N. Goncharov, N.A. Zhukova, M.V. Khvostov, A.V. Pavlova, T.G. Tolstikova, N.G. Sedush, S.N. Chvalun, Mater. Sci. Eng. C 112, 110813 (2020)

    Article  CAS  Google Scholar 

  13. S. Samal, Powder Technol. 366, 43–51 (2020)

    Article  CAS  Google Scholar 

  14. S. Samal, J. Vlach, P. Kavana, Ciênc. Tecnol. Mater. 28, 155–161 (2016)

    Google Scholar 

  15. W. Maherzi, I. Ennahal, M. Benzerzour, Y. Mamindy-Pajany, N. Edineabriak, Powder Technol. (2020). https://doi.org/10.1016/j.powtec.2019.10.104

    Article  Google Scholar 

  16. P.C. Rao, Constr. Build. Mater. 235, 117505 (2020)

    Article  Google Scholar 

  17. A. Carella, M. Casalboni, R. Centore, S. Fusco, C. Noce, A. Quatela, A. Peluso, A. Sirigu, Opt. Mater. 30(3), 473–477 (2007)

    Article  CAS  Google Scholar 

  18. X. Hong, Y. Zheng, X. Zhang, X. Wu, Polymer (2020). https://doi.org/10.1016/j.polymer.2020.122332

    Article  Google Scholar 

  19. S. Pourhashem, M.R. Vaezi, A. Rashidi, Surf. Coat. Technol. 311, 282–294 (2017)

    Article  CAS  Google Scholar 

  20. Y. Lu, P. Zhang, M. Fan, P. Jiang, Y. Bao, X. Gao, J. Xia, Polymer 182, 121832 (2019)

    Article  Google Scholar 

  21. L.F. Kosyanchuk, N.V. Kozak, N.V. Babkina, T.V. Bezrodna, O.O. Brovko, Opt. Mater. 85, 408–413 (2018)

    Article  CAS  Google Scholar 

  22. J. Lv, H. Wang, Y. Liu, J. Chen, H. Chen, J. Xu, J. Sun, H. Zhao, C. Zhu, Compos. Sci. Technol. 186, 107908 (2020)

    Article  CAS  Google Scholar 

  23. A.K. Agrawal, B. Singh, Y.S. Kashyap, M. Shukla, B.S. Manjunath, S.C. Gadkari, J. Synchrotron Rad. 26, 1797–1807 (2019)

    Article  CAS  Google Scholar 

  24. A. Mogha, Mater. Today: Proc. 28, 1455–1459 (2020)

    CAS  Google Scholar 

  25. K. Nawaka, C. Putson, Compos. Sci. Technol. 19829, 108293 (2020)

    Article  Google Scholar 

  26. M. Verma, S.S. Chauhan, S.K. Dhawan, V. Choudhary, Composites B 1201, 118–127 (2017)

    Article  Google Scholar 

  27. A.F. Basha, M.A.F. Basha, J. Appl. Phys. 122(23), 235104 (2017)

    Article  Google Scholar 

  28. E.M. Antar, J. Radiat. Res Appl. Sci. 7(1), 129–134 (2014)

    Article  CAS  Google Scholar 

  29. S.H. Wempleand, M. DiDomenico, Phys. Rev. B (1971). https://doi.org/10.1103/PhysRevB.3.1338

    Article  Google Scholar 

  30. M. Mohammadian-Kohol, M. Asgari, H.R. Shakur, Radiat. Phys. Chem. 145, 11–18 (2018)

    Article  CAS  Google Scholar 

  31. S.B. Aziz, O.G.H. Abdullah, M.A. Rasheed, J. Appl. Polym. Sci. 44847, 1–8 (2017)

    Google Scholar 

  32. F.A. Mir, A. Gani, K. Asokan, RSC Adv. 6, 1554–1561 (2016)

    Article  CAS  Google Scholar 

  33. S. Evstropiev, I. Soshnikov, E. Kolobkova, K. Evstropyev, N. Nikonorov, A. Khrebtov, K.V. Dukelskii, K.P. Kotlyar, K.V. Oreshkina, A.V. Nashekin, Opt. Mater. 82, 81–87 (2018). https://doi.org/10.1016/j.optmat.2018.05.029

    Article  CAS  Google Scholar 

  34. S. Yasmeen, F. Iqbal, T. Munawar, M.A. Nawaz, M. Asghar, A. Hussain, Ceram. Int. 45, 17859–17873 (2019)

    Article  CAS  Google Scholar 

  35. C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, J. Alloys Compd. 666, 392–405 (2016)

    Article  CAS  Google Scholar 

  36. K. Dincer, B. Waisi, G. Önal, N. Tuğluoğlu, J. McCutcheon, Ö.F. Yüksele, Synth. Metals 237, 16–22 (2018)

    Article  CAS  Google Scholar 

  37. H. Aydin, B. Gündüz, C. Aydin, Synth. Met. 252, 1–7 (2019)

    Article  CAS  Google Scholar 

  38. D. Vikraman, H.J. Park, S.-I. Kim, M. Thaiyan, J. Alloys. Compd. 686, 616–627 (2016)

    Article  CAS  Google Scholar 

  39. X. Hu, W. Qian, X. Li, G. Fei, G. Luo, Z. Wang, H. Xia, Polym. Compos. 40, 1397–1406 (2019)

    Article  Google Scholar 

  40. R. Sali, L.R. Naik, Int. J. Mod. Trends Eng. Res. 3, 6–11 (2016)

    Google Scholar 

  41. G. Kandhol, H. Wadhwa, S. Chand, S. Mahendia, S. Kumar, Vacuum 160, 384–393 (2019)

    Article  CAS  Google Scholar 

  42. S. Devikala, P. Kamaraj, M. Arthanareeswari, Mater. Today: Proc. 14, 288–295 (2019)

    CAS  Google Scholar 

  43. B.M. Greenhoe, M.K. Hassan, J.S. Wiggins, K.A. Mauritz, J. Polym. Sci. B: Polym. Phys. 54(19), 1918–1923 (2016)

    Article  CAS  Google Scholar 

  44. D.K. Durga, N. Veeraiah, J. Mater. Sci. 36, 5625–5632 (2001)

    Article  CAS  Google Scholar 

  45. D.K. Chattopadhyay, D.C. Webster, Prog. Polym. Sci. 34, 1068–1133 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdeldaym.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdeldaym, A., Magida, M.M. & Elnahas, H.H. Preparation and evaluation of structural, optical, dielectric and thermal characteristics of unirradiated and irradiated polyurethane/magnesium silicate composites. J Mater Sci: Mater Electron 32, 5755–5769 (2021). https://doi.org/10.1007/s10854-021-05296-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05296-9

Navigation