Skip to main content
Log in

Ammonium iodide salt-doped polyvinyl alcohol polymeric electrolyte for UV-shielding filters: synthesis, optical and dielectric characteristics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVA) incorporated with various amounts of ammonium iodide salt (NH4I) composite polymer electrolyte films were prepared via the casting process. The XRD analysis, as a tool for structural investigation, confirms the polymer electrolytes formation. The transmittances of the studied samples are decreased with increasing NH4I fillers. The UV–Vis absorption spectra are shifted to the higher wavelengths, which indicate their importance for light shielding devices. The bandgaps decrease with the increase in NH4I content, attributed to the increase in the crystallite size. The calculated Urbach energy was found to increase with increasing NH4I salt fillers. The samples' optical limiting is carefully investigated using a He–Ne laser beam of wavelength = 632.8 nm. This result enhances light absorption behavior and makes the material suitable for optical UV-protection devices. The correlation between dielectric properties and conductivity is also understood and discussed. The dielectric permittivity ε' of the samples is associated with the dipole, and polarization increased with the addition of NH4I salt content as the particle size increased according to XRD analysis. AC impedance spectroscopy was carried out to disclose the PVA doped with NH4I polymer electrolyte films as a function of various NH4I salt fillers. The analysis via complex electric modulus gives abnormal behavior by adding NH4I salt content, where the minimization of the electrode polarization can be achieved. Our results indicate that the newly designed composite polymeric electrolyte films are commonly appropriate for electronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V. Parameswaran, N. Nallamuthu, P. Devendran, E.R. Nagarajan, A. Manikandan, Electrical conductivity studies on ammonium bromide incorporated with zwitterionic polymer blend electrolyte for battery application. Phys. B 515, 89–98 (2017). https://doi.org/10.1016/j.physb.2017.03.043

    Article  CAS  Google Scholar 

  2. R.A. Senthil, J. Theerthagiri, J. Madhavan, A.K.M. Arof, High performance dye-sensitized solar cell based on 2-mercaptobenzimidazole doped poly(vinylidinefluoride-co-hexafluoropropylene) based polymer electrolyte. J. Macromol. Sci. A 53(4), 245–251 (2016). https://doi.org/10.1080/10601325.2016.1143322

    Article  CAS  Google Scholar 

  3. K. Omri, I. Najeh, L. El Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42, 8940–8948 (2016). https://doi.org/10.1016/j.ceramint.2016.02.151

    Article  CAS  Google Scholar 

  4. K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Phys. B 537, 167–175 (2018). https://doi.org/10.1016/j.physb.2018.02.025

    Article  CAS  Google Scholar 

  5. K. Omri, F. Alharbi, Synthesis and effect of temperature on morphological and photoluminescence properties of TiO2 nanoparticles. Appl. Phys. A 125, 696 (2019). https://doi.org/10.1007/s00339-019-2993-y

    Article  CAS  Google Scholar 

  6. S.B. Aziz, M.A. Rasheed, A.M. Hussein, H.M. Ahmed, Fabrication of polymer blend composites based on [PVA-PVP] (1–x):(Ag2S) x (0.01 ≤ x ≤ 0.03) with small optical band gaps: structural and optical properties. Mater. Sci. Semicond. Process. 71, 197–203 (2017). https://doi.org/10.1016/j.mssp.2017.05.035

    Article  CAS  Google Scholar 

  7. S.B. Aziz, R.B. Marif, M.A. Brza, A.N. Hassan, H.A. Ahmad, Y.A. Faidhalla, M.F.Z. Kadir, Structural, thermal, morphological and optical properties of PEO filled with biosynthesized Ag nanoparticles: new insights to band gap study. Results Phys. 13, 102220 (2019). https://doi.org/10.1016/j.rinp.2019.102220

    Article  Google Scholar 

  8. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, Tuning the absorption of ultraviolet spectra and optical parameters of aluminium doped PVA based solid polymer composites. J. Mater. Sci. 26, 8022–8028 (2015). https://doi.org/10.1007/s10854-015-3457-6

    Article  CAS  Google Scholar 

  9. R.M. Abdullah, S.B. Aziz, S.M. Mamand, A.Q. Hassan, S.A. Hussein, M.F.Z. Kadir, Reducing the crystallite size of spherulites in PEO-based polymer nanocomposites mediated by carbon nanodots and Ag nanoparticles. Nanomaterials 9, 874 (2019). https://doi.org/10.3390/nano9060874

    Article  CAS  Google Scholar 

  10. H.T. Ahmeda, O.G. Abdullah, Structural and ionic conductivity characterization of PEO:MC-NH4I proton conducting polymer blend electrolytes-based films. Results Phys. 16, 102861 (2020). https://doi.org/10.1016/j.rinp.2019.102861

    Article  Google Scholar 

  11. C.S. Ramya, S. Selvasekarapandian, G. Hirankumar, T. Savitha, P.C. Angelo, Investigation on dielectric relaxations of PVP– NH4SCN polymer electrolyte. J. Non-Cryst. Solids 354, 1494–1502 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.08.038

    Article  CAS  Google Scholar 

  12. S.L. Agrawal, S. Markandey, T. Mridula, M.D. Mrigank, P. Kamalesh, Dielectric relaxation studies on [PEO–SiO2]: NH4SCN nanocomposite polymer electrolyte films. J. Mater. Sci. 44, 6060–6068 (2009). https://doi.org/10.1007/s10853-009-3833-9

    Article  CAS  Google Scholar 

  13. S. Ramesh, K.Y. Ng, Characterization of polymer electrolytes based on high molecular weight PVC and Li2SO4. Curr. Appl. Phys. 9, 329–332 (2009). https://doi.org/10.1016/j.cap.2008.03.002

    Article  Google Scholar 

  14. K.P. Radha, S. Selvasekarapandian, S. Karthikeyan, M. Hema, C. Sanjeeviraja, Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F. Ionics 19, 1437–1447 (2013). https://doi.org/10.1007/s11581-013-0866-5

    Article  CAS  Google Scholar 

  15. R. Hemalatha, M. Alagar, S. Selvasekarapandian, B. Sundaresan, V. Moniha, G. Boopathi, P.C. Selvin, Preparation and characterization of proton-conducting polymer electrolyte based on PVA, amino acid proline, and NH4Cl and its applications to electrochemical devices. Ionics 25, 141–154 (2019). https://doi.org/10.1007/s11581-018-2564-9

    Article  CAS  Google Scholar 

  16. S. Sivadevi, S. Selvasekarapandian, S. Karthikeyan, N. Vijaya, M.G.F. Kingslin, C. Sanjeeviraja, Structural and AC impedance analysis of blend polymer electrolyte based on PVA and PAN. Int. J. Sci. Res. 2(10), 1–3 (2013). https://doi.org/10.15373/22778179/OCT2013/121

    Article  Google Scholar 

  17. S. Selvasekarapandian, M. Hema, J. Kawamura, O. Kamishima, Characterization of PVA-NH4NO3 polymer electrolyte and its application in rechargeable proton battery. J. Phys. Soc. Jpn. 79, 163–168 (2010). https://doi.org/10.1143/JPSJS.79SA.163

    Article  Google Scholar 

  18. K.P. Radha, S. Selvasekarapandian, Characterization of PVA: NH4F: ZrO2 composite polymer electrolytes. Int. J. Sci. Res. 1, 118–119 (2012). https://doi.org/10.15373/22778179/OCT2012/43

    Article  Google Scholar 

  19. G. Hirankumar, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, Thermal, electrical and optical studies on the poly (vinyl alcohol) based polymer electrolytes. J. Power Sources 144, 262–267 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.019

    Article  CAS  Google Scholar 

  20. M. Hema, S. Selvasekarapandian, D. Arunkumar, A. Sakunthala, H. Nithya, FTIR XRD and AC impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X=Cl, Br, I). J. Non-Cryst. Solids 355, 84–90 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.10.009

    Article  CAS  Google Scholar 

  21. C.S. Ramya, S. Selvasekarapandian, T. Savitha, G. Hirankumar, Transport mechanism of Cu-ion conducting PVA based solid polymer electrolyte. Ionics 11, 436–441 (2005). https://doi.org/10.1007/BF02430262

    Article  CAS  Google Scholar 

  22. G. Hirankumar, S. Selvasekarapandian, M.S. Bhuvaneswari, R. Baskaran, M. Vijayakumar, Ag+ ion transport studies in poly vinyl alcolhol based polymer electrolyte system. J Solid State Electrochem. 10, 193–197 (2006). https://doi.org/10.1007/s10008-004-0612-z

    Article  CAS  Google Scholar 

  23. P.D. Vinoth, S. Selvasekarapandian, R. Bhuvaneswari, M. Premalatha, S. Monisha, D. Arunkumar, K. Junichi, Development and characterization of proton conducting polymer electrolyte based on PVA, amino acid glycine and NH4SCN. Solid State Ionics 298, 15–22 (2016). https://doi.org/10.1016/j.ssi.2016.10.016

    Article  CAS  Google Scholar 

  24. S. Sikkanthar, S. Karthikeyan, S. Selvasekarapandian, D. Arunkumar, H. Nithya, J. Kawamura, Structural, electrical conductivity and transport analysis of PAN–NH4Cl polymer electrolyte system. Ionics 22, 1085–1094 (2016). https://doi.org/10.1007/s11581-016-1645-x

    Article  CAS  Google Scholar 

  25. G. Boopathi, S. Pugalendhi, S. Selvasekarapandian, M. Premalatha, S. Monisha, G. Aristatil, Development of proton conducting biopolymer membrane based on agar-agar for fuel cell. Ionics 23, 2781–2790 (2016). https://doi.org/10.1007/s11581-016-1876-x

    Article  CAS  Google Scholar 

  26. M. Hema, S. Selvasekarapandian, D. Arunkumar, A. Sakunthala, H. Nithya, FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X=Cl, Br, I). J. Non Cryst. Solids 355, 84–90 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.10.009

    Article  CAS  Google Scholar 

  27. M.H. Buraidah, A.K. Arof, Characterization of chitosan/PVA blended electrolyte doped with NH4I. J. Non-Cryst. Solids 357, 3261–3266 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.05.021

    Article  CAS  Google Scholar 

  28. R. Khalil, Impedance and modulus spectroscopy of poly(vinyl alcohol)-Mg[ClO4]2 salt hybrid films. Appl. Phys. A 12, 1234 (2017). https://doi.org/10.1007/s00339-017-1026-y

    Article  CAS  Google Scholar 

  29. I.S. Yahia, M.I. Mohammed, A.M. Nawar, Multifunction applications of TiO2/poly(vinyl alcohol) nanocomposites for laser attenuation applications. Phys. B 556, 48–60 (2019). https://doi.org/10.1016/j.physb.2018.12.031

    Article  CAS  Google Scholar 

  30. I.S. Yahia, M.I. Mohammed, Facile synthesis of graphene oxide/PVA nanocomposites for laser optical limiting: band gap analysis and dielectric constants. J. Mater. Sci. 29, 8555–8563 (2018). https://doi.org/10.1007/s10854-018-8869-7

    Article  CAS  Google Scholar 

  31. S. Divakara, S. Madhu, R. Somashekar, Stacking faults and microstructural parameters in non-mulberry silk fibres. Pramana J. Phys. 73, 927–938 (2009). https://doi.org/10.1007/s12043-009-0159-8

    Article  CAS  Google Scholar 

  32. I.H. Hall, R. Somashekar, Determination of crystal size and disorder from the X-ray diffraction photograph of polymer fibres. 2. Modelling intensity profiles. J. Appl. Cryst. 24, 1051–1059 (1991). https://doi.org/10.1107/S0021889891007707

    Article  CAS  Google Scholar 

  33. R. Somashekar, I.H. Hall, P.D. Carr, The determination of crystal size and disorder from X-ray diffraction photographs of polymer fibres. 1. The accuracy of determination of Fourier coefficients of the intensity profile of a reflection. J. Appl. Cryst. 22, 363–371 (1989). https://doi.org/10.1107/S0021889889004085

    Article  CAS  Google Scholar 

  34. R. Somashekar, H. Somashekarappa, X-ray diffraction-line broadening analysis: paracrystalline method. J. Appl. Cryst. 30, 147–152 (1997). https://doi.org/10.1107/S0021889896010023

    Article  CAS  Google Scholar 

  35. S.-D. Cho, J.-Y. Lee, K.-W. Paik, Effects of particle size on dielectric constant and leakage current of epoxy/barium titanate (BaTiO3) composite films for embedded capacitors. Adv. Electron. Mater. Packag. (Cat. No.01EX506) 63–68 (2001). https://doi.org/10.1109/emap.2001.983959

  36. A. Bouzidi, W. Jilani, I.S. Yahia, H.Y. Zahran, M.A. Assiri, Optical analysis and UV-blocking filter of cadmium iodide-doped polyvinyl alcohol polymeric composite films: synthesis and dielectric properties. J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-020-01534-5

    Article  Google Scholar 

  37. D. Coskun, B. Gunduz, M.F. Coskun, Synthesis, characterization and significant optoelectronic parameters of 1-(7-methoxy-1-benzofuran-2-yl) substituted chalcone derivatives. J. Mol. Struct. 1178, 261–267 (2019). https://doi.org/10.1016/j.molstruc.2018.10.043

    Article  CAS  Google Scholar 

  38. B. Gündüz, Optical properties of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4- phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents. Polym. Bull. 72(12), 3241–3267 (2015). https://doi.org/10.1007/s00289-015-1464-7

    Article  CAS  Google Scholar 

  39. S.B. Aziz, Morphological and optical characteristics of chitosan(1–x):Cux (4 ≤ x ≤ 12) based polymer nano-composites: optical dielectric loss as an alternative method for tauc’s model. Nanomaterials 7, 444 (2017). https://doi.org/10.1016/j.mssp.2017.05.035

    Article  CAS  Google Scholar 

  40. S.B. Aziz, A.Q. Hassan, S.J. Mohammed, W.O. Karim, M.F.Z. Kadir, H.A. Tajuddin, N.N.M.Y. Chan, structural and optical characteristics of PVA:C-dot composites: tuning the absorption of ultra violet (UV) region. Nanomaterials 9(2), 216 (2019). https://doi.org/10.3390/nano9020216

    Article  CAS  Google Scholar 

  41. S.B. Aziz, Modifying poly(Vinyl Alcohol) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J. Electron. Mater. 45, 736–745 (2016). https://doi.org/10.1007/s11664-015-4191-9

    Article  CAS  Google Scholar 

  42. S.B. Aziz, M.A. Brza, M.M. Nofal, R.T. Abdulwahid, S.A. Hussen, A.M. Hussein, W.O. Karim, A comprehensive review on optical properties of polymer electrolytes and composites. Materials 13(17), 3675 (2020). https://doi.org/10.3390/ma13173675

    Article  CAS  Google Scholar 

  43. K.S. Hemalatha, K. Rukmani, Concentration dependent dielectric, AC conductivity and sensing study of ZnO-polyvinyl alcohol nanocomposite films. Int. J. Nanotechnol. 14, 961–973 (2017). https://doi.org/10.1504/IJNT.2017.086778

    Article  CAS  Google Scholar 

  44. M. Abdelaziz, M.M. Ghannam, Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Phys. B 405(3), 958–964 (2010). https://doi.org/10.1016/j.physb.2009.10.030

    Article  CAS  Google Scholar 

  45. S.B. Aziz, M. Rasheed, H. Ahmed, Synthesis of polymer nanocomposites based on [Methyl Cellulose](1–x):(CuS)x (0.02 M ≤ x ≤ 0.08 M) with desired optical band gaps. Polymers 9(12), 194 (2017). https://doi.org/10.3390/polym9060194

    Article  CAS  Google Scholar 

  46. Y. Khairy, M.M. Abdel-Aziz, H. Algarni, A.M. Alshehri, I.S. Yahia, H.E. Ali, The optical characteristic of PVA composite films doped by ZrO2 for optoelectronic and block UV-visible applications. Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab4e34

    Article  Google Scholar 

  47. W. Al-Taa’y, M.A. Nabi, R.M. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Effect of nano ZnO on the optical properties of poly (vinyl chloride) films. Int. J. Polym. Sci. (2014). https://doi.org/10.1155/2014/697809

    Article  Google Scholar 

  48. A. Bouzidi, W. Jilani, H. Guermazi, I.S. Yahia, H.Y. Zahran, G.B. Sakr, The effect of zinc iodide on the physicochemical properties of highly flexible transparent poly (vinyl alcohol) based polymeric composite films: opto-electrical performance. J. Mater. Sci. 30, 11799–11806 (2019). https://doi.org/10.1007/s10854-019-01552-1

    Article  CAS  Google Scholar 

  49. N. Sabry, M.I. Mohammed, I.S. Yahia, Optical analysis, optical limiting and electrical properties of novel PbI2/PVA polymeric nanocomposite films for electronic optoelectronic applications. Mater. Res. Express 6, 115339 (2019). https://doi.org/10.1088/2053-1591/ab4c24

    Article  Google Scholar 

  50. F.F. Muhammad, S.B. Aziz, S.A. Hussein, Effect of the dopant salt on the optical parameters of PVA:NaNO3 solid polymer electrolyte. J. Mater. Sci. 26, 521–529 (2015). https://doi.org/10.1007/s10854-014-2430-0

    Article  CAS  Google Scholar 

  51. S.K. Tripathy, Refractive indices of semiconductors from energy gaps. Opt. Mater. 46, 240–246 (2015). https://doi.org/10.1016/j.optmat.2015.04.026

    Article  CAS  Google Scholar 

  52. T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Stat. Sol. (b) 131, 415 (1985). https://doi.org/10.1002/pssb.2221310202

    Article  CAS  Google Scholar 

  53. R.R. Reddy, S. Anjaneyulu, Analysis of the moss and ravindra relations. Phys. Status Sol. (b) 174(2), K91–K93 (1992). https://doi.org/10.1002/pssb.2221740238

    Article  CAS  Google Scholar 

  54. M. Anani, C. Mathieu, S. Lebid, Y. Amar, Z. Chama, H. Abid, Model for calculating the refractive index of a III-V semiconductor. Comput. Matter. Sci. 41, 570 (2008). https://doi.org/10.1016/j.commatsci.2007.05.023

    Article  CAS  Google Scholar 

  55. V. Kumar, J. K. Singh Ind, Model for calculating the refractive index of different materials. J. Pure Appl. Phys. 48 (2010) 571–574. http://nopr.niscair.res.in/handle/123456789/9962.

  56. F.M. Ali, Synthesis and characterization of a novel erbium doped poly(vinyl alcohol) films for multifunctional optical materials. J. Inorg. Organomet. Polym. 30, 2418–2429 (2020). https://doi.org/10.1007/s10904-019-01386-8

    Article  CAS  Google Scholar 

  57. T. Abdel-Baset, M. Elzayat, S. Mahrous, Characterization and optical and dielectric properties of polyvinyl chloride/silica nanocomposites films. Int. J. Polym. Sci. 2016, 13 (2016). https://doi.org/10.1155/2016/1707018

    Article  CAS  Google Scholar 

  58. H. Eliasson, I. Albinsson, B.E. Mellander, Conductivity and dielectric properties of AgCF3SO3-PPG. Mater. Res. Bull. 35, 1053–1065 (2000). https://doi.org/10.1016/S0025-5408(00)00309-3

    Article  CAS  Google Scholar 

  59. S.M. Salem, Effect of iron on the electrical properties of lead–bismuth glasses. J. Mater. Sci. 44, 5760–5767 (2009). https://doi.org/10.1007/s10853-009-3807-y

    Article  CAS  Google Scholar 

  60. D.K. Das-Gupta, Molecular processes in polymer electrets. J. Electrost. 515, 159–166 (2001). https://doi.org/10.1016/S0304-3886(01)00090-0

    Article  Google Scholar 

  61. B.A. Shujahadeen, M.F.Z. Kadir, M.H. Hamsan, H.J. Woo, M.A. Brza, Development of polymer blends based on PVA: POZ with low dielectric constant for microelectronic applications. Sci. Rep. 9, 13163 (2019). https://doi.org/10.1038/s41598-019-49715-8

    Article  CAS  Google Scholar 

  62. S.B. Aziz, R.M. Abdullah, Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS: AgNt] x: PEO(x–1)(10≤x≤50). Electrochim. Acta 285, 30–46 (2018). https://doi.org/10.1016/j.electacta.2018.07.233

    Article  CAS  Google Scholar 

  63. N. Kulshrestha, B. Chatterjee, P. Gupta, Characterization and electrical properties of polyvinyl alcohol-based polymer electrolyte films doped with ammonium thiocyanate. Mater. Sci. Eng. B 184, 49–57 (2014). https://doi.org/10.1016/j.mseb.2014.01.012

    Article  CAS  Google Scholar 

  64. R. Ramani, R. Ramachandran, G. Amarendra, S. Alam, Direct correlation between free volume and dielectric constant in a fuorine-containing polyimide blend. J. Phys. 618, 012025 (2015). https://doi.org/10.1088/1742-6596/618/1/012025

    Article  CAS  Google Scholar 

  65. N. Mazuki, A.P.P. Abdul Majeed, A.S. Samsudin, Study on electrochemical properties of CMC-PVA doped NH4Br based solid polymer electrolytes system as application for EDLC. J. Polym. Res. 27, 135 (2020). https://doi.org/10.1007/s10965-020-02078-5

    Article  CAS  Google Scholar 

  66. S. Ramesh, A.H. Yahaya, A.K. Arof, Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152, 291–294 (2002). https://doi.org/10.1016/S0167-2738(02)00311-9

    Article  Google Scholar 

  67. L.C. Hsu, M.C. Yang, T. Higashihara, W.C. Chen, M. Ueda, Synthesis and characterization of poly(2,6-dialkoxy-1,5- naphthylene)s with low dielectric constants. Polym. J. 50, 277–280 (2018). https://doi.org/10.1038/s41428-017-0011-9

    Article  CAS  Google Scholar 

  68. H. Sun, Y. Lv, C. Zhang, X. Zuo, M. Li, X. Yue, Z. Jiang, Materials with low dielectric constant and loss and good thermal properties prepared by introducing perfuorononenyl pendant groups onto poly(ether ether ketone). RSC Adv. 8, 7753 (2018). https://doi.org/10.1039/C7RA13600E

    Article  CAS  Google Scholar 

  69. O.G. Abdullah, S.B. Aziz, M.A. Rasheed, Incorporation of NH4NO3 into MC-PVA blend-based polymer to prepare proton-conducting polymer electrolyte films. Ionics 24, 777–785 (2018). https://doi.org/10.1007/s11581-017-2228-1

    Article  CAS  Google Scholar 

  70. S.B. Aziz, Role of dielectric constant on Ion transport: reformulated arrhenius equation. Adv. Mater. Sci. Eng. 2016, 2527013 (2016). https://doi.org/10.1155/2016/2527013

    Article  CAS  Google Scholar 

  71. A.S. Samsudin, M.I.N. Isa, Structural and ionic transport study on CMC doped NH4Br: a new types of biopolymer electrolytes. J. Appl. Sci. 12(2), 174–179 (2012). https://doi.org/10.3923/jas.2012.174.179

    Article  CAS  Google Scholar 

  72. M. Marzantowicz, J.R. Dygas, F. Krok, A. Łasinska, Z. Florjanczyk, E. Zygadło-Monikowska, In situ microscope and impedance study of polymer electrolytes. Electrochim. Acta 51, 1713–1727 (2006). https://doi.org/10.1016/j.electacta.2005.02.098

    Article  CAS  Google Scholar 

  73. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983).

    Google Scholar 

  74. A.S. Marf, R.M. Abdullah, B.A. Shujahadeen, Structural, morphological, electrical and electrochemical properties of PVA: CS-based proton-conducting polymer blend electrolytes. Membranes 10, 71 (2020). https://doi.org/10.3390/membranes10040071

    Article  CAS  Google Scholar 

  75. W. Jilani, A. Bouzidi, I.S. Yahia, H. Guermazi, H.Y. Zahran, G. Saker, Effect of organic inorganics on structural properties, linear optics and impedance spectroscopy of methyl orange (C.I. acid orange 52) doped polyvinyl alcohol composite thin films. J. Mater. Sci. 29, 16446–16453 (2018). https://doi.org/10.1007/s10854-018-9736-2

    Article  CAS  Google Scholar 

  76. B.A. Shujahadeen, M.A. Brza, M.H. Hamsan, M.F.Z. Kadir, S.K. Muzakir, R.T. Abdulwahid, Effect of ohmic-drop on electrochemical performance of EDLC fabricated from PVA: dextran: NH4I based polymer blend electrolytes. J. Mater. Res. Technol. 9(3), 3734–3745 (2020). https://doi.org/10.1016/j.jmrt.2020.01.110

    Article  CAS  Google Scholar 

  77. N.M.J. Rasali, S.K. Muzakir, A.S. Samsudin, A study on dielectric properties of the cellulose derivative-NH4Br-glycerol based the solid polymer electrolyte system. Makara J. Technol. 21, 65–69 (2017). https://doi.org/10.7454/mst.v21i2.3082

    Article  Google Scholar 

  78. T. Siddaiah, P. Ojha, N.O. Gopal, Ch. Ramu, H. Nagabhushana, Thermal, structural, optical and electrical properties of PVA/MAA: EA polymer blend filled with different concentrations of lithium perchlorate. J. Sci. Adv. Mater. Devices 3, 456–463 (2018). https://doi.org/10.1016/j.jsamd.2018.11.004

    Article  Google Scholar 

  79. A.P. Fonseca, D.S. Rosa, F. Gaboardi, S. Neves, Development of a biodegradable polymer electrolyte for rechargeable batteries. J. Power Sources 155(2), 381–384 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.004

    Article  CAS  Google Scholar 

  80. S.B. Aziz, Occurrence of electrical percolation threshold and observation of phase transition in chitosan(1–x): AgIx (0.05_x_0.2)-based ion-conducting solid polymer composites. Appl. Phys. A 122, 706 (2016). https://doi.org/10.1007/s00339-016-0235-0

    Article  CAS  Google Scholar 

  81. S.B. Aziz, Z.H.Z. Abidin, Electrical and morphological analysis of chitosan: AgTf solid electrolyte. Mater. Chem. Phys. 144, 2802–2886 (2014). https://doi.org/10.1016/j.matchemphys.2013.12.029

    Article  CAS  Google Scholar 

  82. S.B. Aziz, R.M. Abdullah, M.A. Rasheed, H.M. Ahmed, Role of ion dissociation on DC conductivity and silver nanoparticle formation in PVA:AgNt based polymer electrolytes: deep insights to ion transport mechanism. Polymers 9, 338 (2017). https://doi.org/10.3390/polym9080338

    Article  CAS  Google Scholar 

  83. H. Hassib, A.A. Razik, Dielectric properties and AC conduction mechanism for 5,7-dihydroxy- 6-formyl-2-methylbenzo-pyran-4-one bis-schi_base. Solid State Commun. 147, 345–349 (2008). https://doi.org/10.1016/j.ssc.2008.06.034

    Article  CAS  Google Scholar 

  84. A. Manjunath, T. Deepa, N.K. Supreetha, M. Irfan, Studies on AC electrical conductivity and dielectric properties of PVA/NH4NO3 solid polymer electrolyte films. Adv. Mater. Phys. Chem. 5, 295–301 (2015). https://doi.org/10.4236/ampc.2015.58029

    Article  CAS  Google Scholar 

  85. R. Macovez, M. Zachariah, M. Romanini, P. Zygouri, D. Gournis, J.L. Tamarit, Hopping conductivity and polarization effects in a fullerene derivative salt. J. Phys. Chem. C 118, 12170–12175 (2014). https://doi.org/10.1021/jp503298e

    Article  CAS  Google Scholar 

  86. S.B. Aziz, Z.H.Z. Abidin, Electrical conduction mechanism in solid polymer electrolytes: new concepts to arrhenius equation. J. Soft Matter 2013, 8 (2013). https://doi.org/10.1155/2013/323868

    Article  Google Scholar 

  87. H.T. Ahmed, O.G. Abdullah, Structural and ionic conductivity characterization of PEO:MC-NH4I proton conducting polymer blend electrolytes based films. Results Phys. 16, 102861 (2020). https://doi.org/10.1016/j.rinp.2019.102861

    Article  Google Scholar 

  88. S.B. Aziz, T.J. Woo, M.F.Z. Kadir, H.M. Ahmed, A conceptual review on polymer electrolytes and ion transport models. J. Sci. 3, 1–17 (2018). https://doi.org/10.1016/j.jsamd.2018.01.002

    Article  Google Scholar 

  89. S.B. Aziz, Study of electrical percolation phenomenon from the dielectric and electric modulus analysis. Bull. Mater. Sci. 38, 1597–1602 (2015). https://doi.org/10.1007/s12034-015-0978-9

    Article  CAS  Google Scholar 

  90. S.B. Aziz, R.M. Abdullah, M.F.Z. Kadir, H.M. Ahmed, Non suitability of silver ion conducting polymer electrolytes based on chitosan mediated by barium titanate (BaTiO3) for electrochemical device applications. Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2018.11.081

    Article  Google Scholar 

  91. S.B. Aziz, S.M. Mamand, The study of dielectric properties and conductivity relaxation of ion conducting chitosan:NaTf based solid electrolyte. Int. J. Electrochem. Sci. 13, 10274–10288 (2018). https://doi.org/10.20964/2018.11.05

    Article  CAS  Google Scholar 

  92. S.B. Aziz, R.M. Abdullah, Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS:AgNt]x:PEO(x–1) (10≤x≤50). Electrochim. Acta 285, 30–46 (2018). https://doi.org/10.1016/j.electacta.2018.07.233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Ministry of Education, Kingdom of Saudi Arabia, for this research through a Grant (PCSED-019-18) under the Promising Centre for Sensors and Electronic Devices (PCSED) at Najran University, Kingdom of Saudi Arabia. Also, the authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number (R.G.P.2/64/40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bouzidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, M.I., Bouzidi, A., Zahran, H.Y. et al. Ammonium iodide salt-doped polyvinyl alcohol polymeric electrolyte for UV-shielding filters: synthesis, optical and dielectric characteristics. J Mater Sci: Mater Electron 32, 4416–4436 (2021). https://doi.org/10.1007/s10854-020-05184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05184-8

Navigation