Skip to main content
Log in

Piezoelectric pressure sensors based on GO-modified P(VDF-TrFE) fibers for vacuum applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The performance of vacuum insulation panels (VIPs) is greatly determined by their internal vacuum, which is difficult to maintain constant for a long period of time, thus leading to their premature aging. This degradation is mainly caused by the underlying gas and moisture permeation under an extreme environment or from the residual material left inside during the manufacturing process. Hence, the development of smart pressure sensors capable of identifying minute fluctuations in the internal pressure at an initial stage is currently highly desirable in the industry. In the present study, the electrospinning technique was used for the fabrication of poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) and graphene-oxide-modified poly(vinylidene fluoride-trifluoroethylene) GO-P(VDF-TrFE) fiber membranes for piezoelectric pressure-sensing applications. The conventional interdigitated electrode was successfully deposited on the fibrous structure with high continuity in the fingers. The thermal stability and compatibility of the prepared structures were ascertained by performing the thermal characterization. The developed devices revealed high electric output when exposed to the pressure. The GO-P(VDF-TrFE) smart fiber-based device offered admirable response time (0.282 s) and high linearity of R2 = 0.99294, respectively. Our findings will lay a foundation for the establishment of future wireless smart structures capable of detecting small internal pressure (≤ 10 Pa) in many devices such as VIPs and other products even after their installation in building structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Qing, W. Li, Y. Wang, H. Sun, Piezoelectric transducer-based structural health monitoring for aircraft applications. Sensors 19(3), 545 (2019). https://doi.org/10.3390/s19030545

    Article  Google Scholar 

  2. V. Giurgiutiu, Structural health monitoring (SHM) of aerospace composites, Polymer Composites in the Aerospace Industry (Elsevier, Amsterdam, 2020), pp. 491–558. https://doi.org/10.1016/B978-0-08-102679-3.00017-4

    Chapter  Google Scholar 

  3. E.D. Gregory, W.C. Schneck III, C.A. Leckey, P. Swindell, Simulation assisted guided wave structural health monitoring of aerospace structures, in AIP Conference Proceedings, 2019, vol. 2102, no. 1, pp. 130006: AIP Publishing LLC. (2019). https://doi.org/10.1063/1.5099856

  4. V. Rahul, S. Alokita, K. Jayakrishna, V.R. Kar, M. Rajesh, S. Thirumalini, M. Manikandan, Structural health monitoring of aerospace composites, Structural Health Monitoring of Biocomposites Fibre-Reinforced Composites and Hybrid Composites (Woodhead Publishing, Cambridge, 2019), pp. 33–52. https://doi.org/10.1016/B978-0-08-102291-7.00003-4

    Chapter  Google Scholar 

  5. Y. Wang, L. Qiu, Y. Luo, R. Ding, "A stretchable and large-scale guided wave sensor network for aircraft smart skin of structural health monitoring, Structural Health Monitoring (Sage Publications, London, 2019), pp. 1–16. https://doi.org/10.1177/1475921719850641

    Chapter  Google Scholar 

  6. W.S. Na, J. Baek, A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures. Sensors 18(5), 1307 (2018). https://doi.org/10.3390/s18051307

    Article  CAS  Google Scholar 

  7. G. Heo, B. Son, C. Kim, S. Jeon, J. Jeon, Development of a wireless unified-maintenance system for the structural health monitoring of civil structures. Sensors 18(5), 1485 (2018). https://doi.org/10.3390/s18051485

    Article  Google Scholar 

  8. C.R. Farrar, K. Worden, An introduction to structural health monitoring. Philos. Trans. R. Soc. A 365(1851), 303–315 (2007). https://doi.org/10.1098/rsta.2006.1928

    Article  Google Scholar 

  9. J.P. Lynch, An overview of wireless structural health monitoring for civil structures. Philos. Trans. R. Soc. A 365(1851), 345–372 (2007). https://doi.org/10.1098/rsta.2006.1932

    Article  Google Scholar 

  10. B. Chapuis, Introduction to structural health monitoring, Sensors Algorithms and Applications for Structural Health Monitoring (Springer, Cham, 2018), pp. 1–11. https://doi.org/10.1007/978-3-319-69233-3_1

    Chapter  Google Scholar 

  11. H.-P. Chen, Structural Health Monitoring of Large Civil Engineering Structures (Wiley, Hoboken, 2018)

    Book  Google Scholar 

  12. H.-R. Shih, W.L. Walters, W. Zheng, J. Everett, Course modules on structural health monitoring with smart materials. J. Technol. Stud. 35(2), 65–73 (2009). https://doi.org/10.21061/jots.v35i2.a.7

    Article  Google Scholar 

  13. D. Balageas, C.-P. Fritzen, A. Güemes, Structural Health Monitoring (Wiley, Hoboken, 2010)

    Google Scholar 

  14. H.U. Rehman, Experimental performance evaluation of solid concrete and dry insulation materials for passive buildings in hot and humid climatic conditions. Appl. Energy 185, 1585–1594 (2017). https://doi.org/10.1016/j.apenergy.2016.01.026

    Article  Google Scholar 

  15. P.M. Congedo, C. Baglivo, G. Centonze, Walls comparative evaluation for the thermal performance improvement of low-rise residential buildings in warm Mediterranean climate. J. Build. Eng. 28, 101059 (2020). https://doi.org/10.1016/j.jobe.2019.101059

    Article  Google Scholar 

  16. B.P. Jelle, Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build. 43(10), 2549–2563 (2011). https://doi.org/10.1016/j.enbuild.2011.05.015

    Article  Google Scholar 

  17. E. Cuce, P.M. Cuce, C.J. Wood, S.B. Riffat, Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew. Sustain. Energy Rev. 34, 273–299 (2014). https://doi.org/10.1016/j.rser.2014.03.017

    Article  CAS  Google Scholar 

  18. W. Villasmil, L.J. Fischer, J. Worlitschek, A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renew. Sustain. Energy Rev. 103, 71–84 (2019). https://doi.org/10.1016/j.rser.2018.12.040

    Article  CAS  Google Scholar 

  19. M. Alam, H. Singh, M.C. Limbachiya, Vacuum Insulation Panels (VIPs) for building construction industry—a review of the contemporary developments and future directions. Appl. Energy 88(11), 3592–3602 (2011). https://doi.org/10.1016/j.apenergy.2011.04.040

    Article  Google Scholar 

  20. Z. Chen, Z.F. Chen, J.L. Qiu, T.Z. Xu, J.M. Zhou, Vacuum insulation panel for green building. Appl. Mech. Mater. 71, 607–611 (2011). https://doi.org/10.4028/www.scientific.net/AMM.71-78.607

    Article  Google Scholar 

  21. C. Peng, J. Yang, Structure, mechanism, and application of vacuum insulation panels in Chinese buildings. Adv. Mater. Sci. Eng. 2016, 1–16 (2016). https://doi.org/10.1155/2016/1358072

    Article  Google Scholar 

  22. L. Aditya, T.M.I. Mahlia, B. Rismanchi, H.M. Ng, M.H. Hasan, H.S.C. Metselaar, O. Muraza, H.B. Aditiy, A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 73, 1352–1365 (2017). https://doi.org/10.1016/j.rser.2017.02.034

    Article  CAS  Google Scholar 

  23. M. Alam, H. Singh, S. Suresh, D. Redpath, Energy and economic analysis of Vacuum Insulation Panels (VIPs) used in non-domestic buildings. Appl. Energy 188, 1–8 (2017). https://doi.org/10.1016/j.apenergy.2016.11.115

    Article  CAS  Google Scholar 

  24. S. Verma, H. Singh, Vacuum insulation panels for refrigerators. Int. J. Refrig. 112, 215–228 (2020). https://doi.org/10.1016/j.ijrefrig.2019.12.007

    Article  Google Scholar 

  25. E. Wegger, B.P. Jelle, E. Sveipe, Aging effects on thermal properties and service life of vacuum insulation panels. J. Build. Phys. 35(2), 128–167 (2011). https://doi.org/10.1177/1744259111398635

    Article  Google Scholar 

  26. X. Di, Y. Gao, C. Bao, S. Ma, Thermal insulation property and service life of vacuum insulation panels with glass fiber chopped strand as core materials. Energy Build. 73, 176–183 (2014). https://doi.org/10.1016/j.enbuild.2014.01.010

    Article  Google Scholar 

  27. H. Simmler, S. Brunner, U. Heinemann, H. Schwab, K. Kumaran, P. Mukhopadhyaya, D. Quenard, H. Sallee, K. Noller, E. Kuecuekpinar-Niarchos, C. Stramm, M. Tenpierik, H. Cauberg, H, M. Erb, "IEA/ECBCS Annex 39: Vacuum Insulation Panels—Study on VIP-components and Panels for Service Life Prediction of VIP in Building Applications (Subtask A),", Switzerland, (2005), https://www.osti.gov/etdeweb/biblio/21131463. Accessed 23 Aug 2020

  28. T. Sharma, S.-S. Je, B. Gill, J.X. Zhang, Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application. Sens. Actuators A 177, 87–92 (2012). https://doi.org/10.1016/j.sna.2011.08.019

    Article  CAS  Google Scholar 

  29. Y. Zang, F. Zhang, C.-A. Di, D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2(2), 140–156 (2015). https://doi.org/10.1039/C4MH00147H

    Article  CAS  Google Scholar 

  30. L. Persano, C. Dagdeviren, C. Maruccio, L. De Lorenzis, D. Pisignano, Cooperativity in the enhanced piezoelectric response of polymer nanowires. Adv. Mater. 26(45), 7574–7580 (2014). https://doi.org/10.1002/adma.201403169

    Article  Google Scholar 

  31. A. Wang, M. Hu, L. Zhou, X. Qiang, Self-powered wearable pressure sensors with enhanced piezoelectric properties of aligned P(VDF-TrFE)/MWCNT composites for monitoring human physiological and muscle motion signs. Nanomaterials 8(12), 1021 (2018). https://doi.org/10.3390/nano8121021

    Article  CAS  Google Scholar 

  32. Y. Jiang, L. Gong, X. Hu, Y. Zhao, H. Chen, L. Feng, D. Zhang, Aligned P (VDF-TrFE) nanofibers for enhanced piezoelectric directional strain sensing. Polymers 10(4), 364 (2018). https://doi.org/10.3390/polym10040364

    Article  CAS  Google Scholar 

  33. B. Li, F. Zhang, S. Guan, J. Zheng, C. Xu, Wearable piezoelectric device assembled by one-step continuous electrospinning. J. Mater. Chem. C 4(29), 6988–6995 (2016). https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  34. S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, H.Y. Kim, Electrospun nanofibers: new generation materials for advanced applications. Mater. Sci. Eng., B 217, 36–48 (2017). https://doi.org/10.1016/j.mseb.2017.01.001

    Article  CAS  Google Scholar 

  35. J.K.Y. Lee, N. Chen, S. Peng, L. Li, L. Tian, N. Thakor, S. Ramakrishna, Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog. Polym. Sci. 86, 40–84 (2018). https://doi.org/10.1016/j.progpolymsci.2018.07.002

    Article  CAS  Google Scholar 

  36. N.M. Aboamera, A. Mohamed, A. Salama, T. Osman, A. Khattab, Characterization and mechanical properties of electrospun cellulose acetate/graphene oxide composite nanofibers. Mech. Adv. Mater. Struct. 26(9), 765–769 (2019). https://doi.org/10.1080/15376494.2017.1410914

    Article  CAS  Google Scholar 

  37. J. Zhao, Y. Yang, W. Yu, Q. Ma, X. Dong, X. Wang, J. Wang, G. Liu, Bi 2 MoO 6/RGO composite nanofibers: facile electrospinning fabrication, structure, and significantly improved photocatalytic water splitting activity. J. Mater. Sci.: Mater. Electron. 28(1), 543–552 (2017). https://doi.org/10.1007/s10854-016-5557-3

    Article  CAS  Google Scholar 

  38. C. Brundha, R. Govindaraj, N. Santhosh, M. Senthil Pandian, P. Ramasamy, S. Karuppuchamy, Preparation of one dimensional titanium dioxide nanowires using electrospinning process for dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 28(15), 11509–11514 (2017). https://doi.org/10.1007/s10854-017-6947-x

    Article  CAS  Google Scholar 

  39. H. Yu, Y. Li, X. Lan, Z. Liang, Electrospinning preparation and luminescence properties of La2O3: Ce3+/Tb3+ nanofibers. J. Mater. Sci.: Mater. Electron. 28(12), 8832–8836 (2017). https://doi.org/10.1007/s10854-017-6611-5

    Article  CAS  Google Scholar 

  40. N. Chamankar, R. Khajavi, A.A. Yousefi, A.S. Rashidi, F. Golestanifard, Comparing the piezo, pyro and dielectric properties of PZT particles synthesized by sol–gel and electrospinning methods. J. Mater. Sci.: Mater. Electron. 30(9), 8721–8735 (2019). https://doi.org/10.1007/s10854-019-01197-0

    Article  CAS  Google Scholar 

  41. Q. Fatima, A.A. Haidry, Z. Yao, Y. He, Z. Li, L. Sun, L. Xie, The critical role of hydroxyl groups in water vapor sensing of graphene oxide. Nanoscale Adv. 1(4), 1319–1330 (2019). https://doi.org/10.1039/c8na00135a

    Article  CAS  Google Scholar 

  42. Y.J. Hwang, S. Choi, H.S. Kim, Structural deformation of PVDF nanoweb due to electrospinning behavior affected by solvent ratio. e-Polymers 18(4), 339–345 (2018). https://doi.org/10.1515/epoly-2018-0037

    Article  CAS  Google Scholar 

  43. D. Mao, B.E. Gnade, M.A. Quevedo-Lopez, Ferroelectric properties and polarization switching kinetic of poly (vinylidene fluoride-trifluoroethylene) copolymer, Ferroelectrics-Physical Effects (InTech, Rijeka, 2011), pp. 78–100

    Google Scholar 

  44. N. Weber, Y.-S. Lee, S. Shanmugasundaram, M. Jaffe, T.L. Arinzeh, Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomater. 6(9), 3550–3556 (2010). https://doi.org/10.1016/j.actbio.2010.03.035

    Article  CAS  Google Scholar 

  45. C. Ribeiro, V. Sencadas, J.L.G. Ribelles, S. Lanceros-Méndez, Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly (vinylidene fluoride) electrospun membranes. Soft Mater. 8(3), 274–287 (2010). https://doi.org/10.1080/1539445X.2010.495630

    Article  CAS  Google Scholar 

  46. X. Ren, Nanomanufacturing and Analysis of Novel Continuous Ferroelectric PVDF and P (VDF-TrFE) Nanofibers (The University of Nebraska-Lincoln, Lincoln, 2007)

    Google Scholar 

  47. R. Bhunia, S. Gupta, B. Fatma, Prateek, R.K. Gupta, A. Garg, Milli-Watt power harvesting from dual triboelectric and piezoelectric effects of multifunctional green and robust reduced graphene oxide/P (VDF-TrFE) composite flexible films. ACS Appl. Mater. Interfaces 11(41), 38177–38189 (2019). https://doi.org/10.1021/acsami.9b13360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out under a joint project between Nanjing University of Aeronautics and Astronautics (NUAA), China, and the University of Victoria (UoV), Canada. The project (Grant No. SBZ2019000139) was titled as "Joint Research of Nano modified Ultra-fine Glass Fiber Core with Indulgent Pressure."

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofeng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicts of interests that could appear to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, A., Chen, Z., Haidary, A.A. et al. Piezoelectric pressure sensors based on GO-modified P(VDF-TrFE) fibers for vacuum applications. J Mater Sci: Mater Electron 31, 18627–18639 (2020). https://doi.org/10.1007/s10854-020-04405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04405-4

Navigation