Skip to main content
Log in

Improved microwave dielectric properties of the (Sr1−3x/2Lax)2Ti1−yCeyO4 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Sr1 − 3x/2Lax)2TiO4 ceramics (0 ≤ x ≤ 0.02) with the tetragonal Ruddlesden-Popper structure (I4/mmm) were synthesized through the conventional solid-state methods. The phase composition, chemical structure and the microwave dielectric properties of the (Sr1 − 3x/2Lax)2TiO4 ceramics were investigaed. The single phase was obtained for x < 0.02. The substitution of La3+ for Sr2+ could decrease the ionic polarizability and the cell volume, Which slightly decrease the dielectric constant (εr), the quality factor (Q × f) were closely related to the packing fraction, while the temperature coefficient of resonant frequency (τf) is correlated to the tolerance factor. Which attributed to the increase of the Q × f value and the decrease of the τf value. The optimum microwave dielectric properties for (Sr1-3x/2Lax)2TiO4 were obtained in x = 0.015 (εr = 34.07, Q × f = 86,450 GHz and τf =  + 91.8 ppm/oC). Besides, in order to further decrease the τvalue, the Sr1.955La0.03Ti1 − yCeyO4 ceramics were also synthesized through the conventional solid-state methods. A near-zero τf value was achieved in y = 0.7 (εr = 20.18, Q × f = 87651 GHz and τf =  − 0.2 ppm/°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.A. Vanderah, Talking ceramics. Science 298, 1182–1184 (2002)

    Article  CAS  Google Scholar 

  2. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89(7), 2063–2072 (2006)

    CAS  Google Scholar 

  3. D. Zhou, L.X. Pang, D.W. Wang, C. Li, B.B. Jin, I.M. Reaney, High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J. Mater. Chem. C. 5(38), 10094–10098 (2017)

    Article  CAS  Google Scholar 

  4. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60(7), 392–412 (2015)

    Article  Google Scholar 

  5. S. Nomura, K. Toyama, K. Kanet, Ba(Mg1/3Ta2/3)O3 ceramics with temperature-stable high dielectric constant and low microwave loss. Jpn. J. Appl. Phys. 21(10A), L624 (1982)

    Article  Google Scholar 

  6. S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies. 1983;66(6), 421–423 (1983)

  7. K. Endo, K. Fujimoto, K. Murakawa, Dielectric Properties of Ceramics in Ba(Co1/3 Nb2/3)O3 – Ba(Zn1/3Nb2/3)O3 Solid Solution. J. Am. Ceram. Soc. 70(9), C215–C218 (1987)

    Article  Google Scholar 

  8. H. Wu, P.K. Davies, Influence of non‐stoichiometry on the structure and properties of Ba(Zn1/3Nb2/3)O3 microwave dielectrics: II. Compositional variations in pure BZN. J. Am. Ceram. Soc. 89(7), 2250–2263 (2006)

  9. F. Azough, C. Leach, R. Freer, Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba(Co1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc. 26(14), 2877–2884 (2006)

    Article  CAS  Google Scholar 

  10. M. Li, A. Feteira, M. Mirsaneh, S. Lee, M.T. Lanagan, C.A. Randall, D.C. Sinclair, Influence of nonstoichiometry on extrinsic electrical conduction and microwave dielectric loss of BaCo1/3Nb2/3O3 ceramics. J. Am. Ceram. Soc. 93(12), 4087–4095 (2010)

    Article  CAS  Google Scholar 

  11. S.N. Ruddlesden, P. Popper, New compounds of the K2NiF4 type. Acta Cryst. 10(8), 538–539 (1957)

    Article  CAS  Google Scholar 

  12. B. Liu, L. Li, X.Q. Liu, X.M. Chen, Structural evolution of SrLaAl1−x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric properties. J. Mater. Chem. C. 4(21), 4684–4691 (2016)

  13. B. Liu B, X.Q. Liu, X.M. Chen, Sr2LaAlTiO7: a new Ruddlesden–Popper compound with excellent microwave dielectric properties. J. Mater. Chem. C. 4(8), 1720–1726 (2016)

  14. P.L. Wise, I.M. Reaney, W.E. Lee, Structure-Microwave Property Relations of Ca and Sr titanates. J. Eur. Ceram. Soc. 21(15), 2629–2632 (2001)

    Article  CAS  Google Scholar 

  15. P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, Structure–microwave property relations in (SrxCa(1–x))n +1TinO3n+1. J. Eur. Ceram. Soc. 21(10–11), 1723–1726 (2001)

    Article  CAS  Google Scholar 

  16. B. Liu, L. Li, X.Q. Liu, X.M. Chen, Srn+1TinO3n+1 (n=1, 2) microwave dielectric ceramics with medium dielectric constant and ultra-low dielectric loss. J. Am. Ceram. Soc. 100(2), 496–500 (2017)

    Article  CAS  Google Scholar 

  17. P.L. Wise, I.M. Reaney, W.E. Lee, D.M. Iddles, D.S. Cannell, T.J. Price, Tunability of τf in perovskites and related compounds. J. Mater. Res. 17(8), 2033–2040 (2002)

    Article  CAS  Google Scholar 

  18. Y. Zhang, T. Shimada, T. Kitamura, J. Wang, Ferroelectricity in Ruddlesden-Popper chalcogenide perovskites for photovoltaic application: a role of tolerance factor. J. Phys. Chem. Lett. 8(23), 5834–5839 (2017)

    Article  CAS  Google Scholar 

  19. I. Hameed, B. Liu, L. Li, X.Q. Liu, X.M. Chen, (Sr1‐xCax)2TiO4 Microwave Dielectric Ceramics with R‐P Structure (x = 0~ 0.15). Int. J. Appl. Ceram. Technol. 16(5), 2040–2046 (2019)

  20. B. Liu, Y.H. Huang, K.X. Song, X.M. Chen, Structural evolution and microwave dielectric properties in Sr2(Ti1-xSnx)O4 ceramics. J. Eur. Ceram. Soc. 38(11), 3833–3839 (2018)

    Article  CAS  Google Scholar 

  21. Q.R. Dai, R.Z. Zuo, A novel ultralow-loss Sr2CeO4 microwave dielectr;ic ceramic and its property modification. J. Eur. Ceram. Soc. 39(4), 1132–1136 (2019)

    Article  CAS  Google Scholar 

  22. I. Hameed, S.Y. Wu, L. Li, X.Q. Liu, X.M. Chen, Structure and microwave dielectric characteristics of Sr2[Ti1−x(Al0.5Nb0.5)x]O4 (x ≤ 0.50) ceramics. J. Am. Ceram. Soc. 102(10), 6137– 6146 (2019)

  23. B. Liu, C.C. Hu, Y.H. Huang, K.X. Song, Effects of (Mg1/3Nb2/3) substitution on the structure and microwave dielectric properties of Sr2TiO4 ceramics. MaterLett. 253, 293–297 (2019)

    CAS  Google Scholar 

  24. B. Hakki, P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE. T. Microw. Theory. 8(4), 0–410 (1960)

  25. A.C. Larson, R.B. Dreele, General structure analysis system (GSAS). Los. Alamos. Natl. Lab. Rep. LAUR. 748, 86–748 (2004)

    Google Scholar 

  26. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34(2), 210–213 (2001)

    Article  CAS  Google Scholar 

  27. M.T. Sebastian, Dielectric materials for wireless communication (Elsevier Publishers, Oxford, 2008)

    Google Scholar 

  28. X.Q. Song, K. Du, J. Li, X.K. Lan, W.Z. Lu, X.H. Wang, W. Lei, Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram. Int. 45(1), 279–286 (2019)

    Article  CAS  Google Scholar 

  29. X.Q. Song, K. Du, X.Z. Zhang, J. Li, W.Z. Lu, X.C. Wang, W. Lei, Crystal structure, phase composition and microwave dielectric properties of Ca3MSi2O9 ceramics. J. Alloys. Compd. 750, 996–1002 (2018)

    Article  CAS  Google Scholar 

  30. L.X. Pang, D. Zhou, W.B. Li, Z.X. Yue, High quality microwave dielectric ceramic sintered at extreme-low temperature below 200°C and co-firing with base metal. J. Eur. Ceram. Soc. 37(9), 3073–3077 (2017)

    Article  CAS  Google Scholar 

  31. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    Article  CAS  Google Scholar 

  32. J. Li, L. Fang, H. Luo, J. Khaliq, Y. Tang, C.C. Li, Li4WO5: a temperature stable low-firing microwave dielectric ceramic with rock salt structure. J. Eur. Ceram. Soc. 36(1), 243–246 (2016)

    Article  CAS  Google Scholar 

  33. M.K. Du, L.X. Li, S.H. Yu, Z. Sun, J.L. Qiao, High-Q microwave ceramics of Li2TiO3 co-doped with magnesium and niobium. J. Am. Ceram. Soc. 101(9), 4066–4075 (2018)

    Article  CAS  Google Scholar 

  34. M.Z. Dong, Z.X. Yue, H. Zhuang, S.Q. Meng, L.T. Li, Microstructure and microwave dielectric properties of TiO2-doped Zn2SiO4 ceramics synthesized through the sol-gel process. J. Am. Cream. Soc. 91(12), 3981–3985 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC-51772107), the Major Technological Innovation Projects in Hubei Province (2018AAA039), the Research Projects Supported by the Equipment Development Department (1807WM0004), and the Innovation Team Program of Hubei Province, China (2019CFA004). The authors are grateful to the Analytical and Testing Center, Huazhong University of Science and Technology, for SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, MQ., Song, XQ., Du, K. et al. Improved microwave dielectric properties of the (Sr1−3x/2Lax)2Ti1−yCeyO4 ceramics. J Mater Sci: Mater Electron 31, 13541–13548 (2020). https://doi.org/10.1007/s10854-020-03910-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03910-w

Navigation