Skip to main content
Log in

Structural, optical, and electronic properties of non-stoichiometric nano-ZnS1−x: Mnx

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Non-stoichiometric ZnS1−x:Mnx nanomaterials were prepared using a thermolysis procedure by decreasing the stoichiometric amount of thiourea relative to the amount of zinc acetate as starting precursors: Zn(Ac)/(1−x) thiourea in the presence of (x) manganese acetate (x = 0, 0.01, 0.03, 0.05, and 0.1). Rietveld X-ray diffraction analysis was used to examine the structural modification in the ZnS lattice induced by sulfur deficiency and Mn2+ incorporation. The samples with x ≤ 0.01 exhibited a single ZnS zincblende phase, while other samples, x ≥ 0.02, have two phases ZnS and ZnO with different percentages. The lattice parameter of the system is governed by the Mn and S amounts in the matrix. A high-resolution transmission electron microscope established the quantum dot nature of the system. Fourier-transform infrared technique confirmed the presence of ZnS and ZnO phases in higher Mn-doped ZnS samples. The bandgap obtained from UV–vis analysis showed non-monotonic dependence on Mn content; it initially decreased and then increased to form a bandgap “bowing.” Photoluminescence analysis revealed that the emission colors depended on the amount of Mn doping in the matrix. The PL intensity raised for all Mn-doped samples as compared with the pristine sample reached its maximum value for the 3% and 5% Mn samples. The PL exhibited a red shift for the high dopant amount of Mn. Density function theory calculation was used to explore the electronic and optical characteristics of pure phases in ZnS1−xMnx system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.K. Heiba, M.B. Mohamed, Opt. Quant. Electron. 52(2), 99 (2020)

    CAS  Google Scholar 

  2. M.M.S. Sanad, M.M. Rashad, J. Mater. Sci. Mater. Electron. 27, 9034 (2016)

    CAS  Google Scholar 

  3. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, K. Powers, J. Electron. Mater. 43(9), 3559 (2014)

    CAS  Google Scholar 

  4. M.S. Eraky, M.M.S. Sanad, E.M. El-Sayed, A.Y. Shenouda, E.S. El-Sherefy, AIP Adv. 9(11), 115115 (2019)

    Google Scholar 

  5. Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, A.M. El-Naggar, Inorg Organomet Polym 30, 1898 (2020)

    CAS  Google Scholar 

  6. Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, Int. J. Appl. Ceram. Technol. 16(4), 1590 (2019)

    CAS  Google Scholar 

  7. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Supercond. Novel Magn. 32(9), 298 (2019)

    Google Scholar 

  8. Z.K. Heiba, M.B. Mohamed, Appl. Phys. A 124(12), 818 (2018)

    Google Scholar 

  9. Z.K. Heiba, M.B. Mohamed, A.M. Wahba, N.G. Imam, J. Electron. Mater. 47(1), 711 (2018)

    CAS  Google Scholar 

  10. Z.K. Heiba, N.G. Imam, M.B. Mohamed, J. Mol. Struct. 1115, 156 (2016)

    CAS  Google Scholar 

  11. X.S. Fang, T.Y. Zhai, U.K. Gautam, L. Li, L.M. Wu, Y. Bando, D. Golberg, Prog. Mater. Sci. 56, 175 (2011)

    CAS  Google Scholar 

  12. R.M. Krsmanović Whiffena, D.J. Jovanović, Ž. Antić, B. Bártová, D. Milivojević, M.D. Dramićanin, M.G. Brik, J. Lumin. 146 (2014) 133.

  13. A.I. Cadis, L.E. Muresan, I. Perhaita, V. Munteanu, Y. Karabulut, J.G. Guinea, A. Canimoglu, M. Ayvacikli, N. Can, Opt. Mater. 72, 533 (2017)

    CAS  Google Scholar 

  14. W. Xua, X. Meng, W. Ji, P. Jing, J. Zheng, X. Liu, J. Zhao, H. Li, Chem. Phys. Lett. 532, 72 (2012)

    Google Scholar 

  15. M.B. Mohamed, Int. J. Appl. Ceram. Technol. (2019). https://doi.org/10.1111/ijac.13336

    Article  Google Scholar 

  16. A.L. Stroyuk, A.E. Raevskaya, A.V. Korzhak, S.Y. Kuchmii, J. Nanopart. Res. 9, 1027 (2007)

    CAS  Google Scholar 

  17. D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, Z. Lin, Nanoscale 2, 2062 (2010)

    CAS  Google Scholar 

  18. H. Yang, S. Santra, P.H. Holloway, J. Nanosci. Nanotechnol. 5, 1364 (2005)

    CAS  Google Scholar 

  19. Z.K. Heiba, M.B. Mohamed, J Inorg Organomet Polym 30(3), 879 (2020)

    CAS  Google Scholar 

  20. M.Y. Chen, C.C. Chang, Jpn. J. Appl. Phys. 48, 112201 (2009)

    Google Scholar 

  21. M. Labrenz, G.K. Druschel, T. Thomsen-Ebert, B. Gilbert, S.A. Welch, K.M. Kemner, G.A. Logan, R.E. Summons, G.D. Stasio, P.L. Bond, B. Lai, S.D. Kelly, J.F. Banfield, Science 290, 1744 (2000)

    CAS  Google Scholar 

  22. H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, X. Zhou, J. Lumin. 122, 587 (2007)

    Google Scholar 

  23. J. Cai, S. Wang, K. Zhu, Y. Wu, L. Zhou, Y. Zhang, Q. Wu, Xi. Wang, Z. Hu, RSC Adv. 8 (2018)374.

  24. A. Nag, S. Chakraborty, D.D. Sarma, J. Am. Chem. Soc. 130, 10605 (2008)

    CAS  Google Scholar 

  25. S.R. Chalana, V.S. Kavitha, R. Reshmi Krishnan, V.P.M. Pillai, J. Alloys Compounds 771 (2019) 721

  26. G. Murugadoss, V. Ramasamy, M.R. Kumar, Appl. Nanosci. 4, 449 (2014)

    CAS  Google Scholar 

  27. R.N. Bhargava, D. Gallagher, Phys. Rev. Lett. 72, 416 (1994)

    CAS  Google Scholar 

  28. H. Yang, J. Zhao, L. Song, L. Shen, Z. Wang, L. Wang, D. Zhang, Mater. Lett. 57, 2287 (2003)

    CAS  Google Scholar 

  29. F.B. Dejene, M.O. Onani, L.F. Koao, A.H. Wako, S.V. Motloung, M.T. Yihunie, PhysicaB 480, 63 (2016)

    CAS  Google Scholar 

  30. T.P. Nguyen, Q.V. Lam, T.B. Vu, J. Lumin. 196, 359 (2018)

    CAS  Google Scholar 

  31. A. Roy, C.N.R. Raoa, APL Materials 7, 090901 (2019)

    Google Scholar 

  32. S. Kouser, S.R. Lingampalli, P. Chithaiah, A. Roy, S. Saha, U.V. Waghmare, C.N.R. Rao, Angew. Chem. 127, 8267 (2015)

    Google Scholar 

  33. M. Mohamed, A.M. Abdelraheem, M.I. Abd-Elrahman, N.M.A. Hadia, E.R. Shaaban, Appl. Phys. A 125, 483 (2019)

    CAS  Google Scholar 

  34. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Mater. Sci.: Mater. Electron. 26(9), 6344 (2015)

    CAS  Google Scholar 

  35. M.B. Mohamed, Z.K. Heiba, N.G. Imam, J. Mol. Struct. 1163, 442 (2018)

    CAS  Google Scholar 

  36. Z.K. Heiba, M.B. Mohamed, Appl. Phys. A 124(6), 446 (2018)

    Google Scholar 

  37. Z.K. Heiba, M.B. Mohamed, M.H.A. Kader, J. Electron. Mater. 47(5), 2945 (2018)

    CAS  Google Scholar 

  38. Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, Appl. Phys. A 125(2), 132 (2019)

    Google Scholar 

  39. Z.K. Heiba, M.B. Mohamed, N.G. Imam, Int. Polym. Proc. 33(2), 226 (2018)

    CAS  Google Scholar 

  40. Z.K. Heiba, A.A. Albassam, M.B. Mohamed, Appl. Phys. A 126, 479 (2020)

    CAS  Google Scholar 

  41. L. Lutterotti, Nucl. Inst. Methods, Phys. Res. B. 268, 334 (2010).

  42. J. Rodríguez-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993).

  43. J. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B Condens. Matter 46, 6671 (1992)

    CAS  Google Scholar 

  44. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    CAS  Google Scholar 

  45. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett 77, 3865 (1996)

    CAS  Google Scholar 

  46. Z.K. Heiba, Cryst. Res. Technol. 38(6), 488 (2003)

    CAS  Google Scholar 

  47. Z.K. Heiba, Powder Diffr. 17(3), 191 (2002)

    CAS  Google Scholar 

  48. E. Kroumova, M. I. Aroyo, J. M. Perez Mato, A. Kirov, C. Capillas, S. Ivantchev, H. Wondratschek, Phase Transitions 76(1–2), 155 (2003).

  49. J.X. Yang, S.M. Wang, X. Zhao, Y.P. Tian, S.Y. Zhang, B.K. Jin, X.P. Hao, X.Y. Xu, X.T. Tao, M.H. Jiang, J. Crystal Growth 310, 4358 (2008)

    CAS  Google Scholar 

  50. R. Devi, P. Purkayastha, P.K. Kalita, B.K. Sarma, Bull. Mater. Sci. 30(2), 123 (2007)

    CAS  Google Scholar 

  51. R. Seoudi, A.B. El- Bailly, W. Eisa, A.A. Shabaka, S.I. Soliman, R.K. Abd El Hamid, R.A. Ramadan, J. Appl. Sci. Res. 8(2), 658 (2012).

  52. S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray et al., Phys Rev B. 60, 9191 (1999)

    CAS  Google Scholar 

  53. B. S. Rema Devi, R. Raveendran, A. V. Vaidyan. Pramana-J. Phys. 68, 679 (2007).

  54. P.G. Devi, A.S. Velu, J. Mater. Sci.: Mater. Electr. 27, 10833 (2016)

    Google Scholar 

  55. A. Sadollahkhani, I. Kazeminezhad, J. Lu, O. Nur, L.H.M. Willander, RSC Adv. 4, 36940 (2014)

    CAS  Google Scholar 

  56. J. Huso, L. Bergman, M.D. McCluskey, J. Appl. Phys. 125, 075704 (2019)

    Google Scholar 

  57. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    CAS  Google Scholar 

  58. M. Jaquez, K. M. Yu, M. Ting, M. Hettick, J. F. S_anchez-Royo, M. Wełna, A. Javey, O. D. Dubon, W. Walukiewicz, J. Appl. Phys. 118, 215702 (2015).

  59. R. Viswanatha, S. Sapra, S.S. Gupta, B. SatpatiP, V. Satyam, B.N. Dev, D.D. Sarma, J. Phys. Chem. B 108, 6303 (2004)

    CAS  Google Scholar 

  60. L. Levy, J.F. Hochepied, M.P. Pileni, J. Phys. Chem. 100, 18322 (1996)

    CAS  Google Scholar 

  61. R. Viswanatha, S. Chakraborty, S. Basu, D.D. Sarma, J. Phys. Chem. B 110(45), 22310 (2006)

    CAS  Google Scholar 

  62. S. Sapra, J. Nanda, A. Anand, S.V. Bhat, D.D. Sarma, J. Nanosci. Nanotechnol. 3, 392 (2003)

    CAS  Google Scholar 

  63. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, D. Yoder-Short, Phys. ReV. B 33, 8207 (1986)

    CAS  Google Scholar 

  64. C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, M. Edoff, Phys. Rev. Lett. 97, 146403 (2006)

    Google Scholar 

  65. S. Sapra, A. Prakash, A. Ghangrekar, N. Periasamy, D.D. Sarma, J. Phys. Chem. B 109, 1663 (2005)

    CAS  Google Scholar 

  66. R. M. K. Whiffen, D. J. Jovanović, Ž. Antić, B. Bártov, D. Milivojević, M. D. Dramićanin, M. G. Brik, J. Luminescence 146, 133 (2014).

  67. T.T.Q. Hoa, N.D. The, S.M. Vitie, N.H. Nam, L.V. Vu, T.D. Canh, N.N. Long, Opt. Mater. 33(3), 308 (2011)

    CAS  Google Scholar 

  68. A.L. Curcio, L.F. da Silva, M.I.B. Bernardi, E. Longo, A. Mesquita, J. Lumin 206, 292 (2019)

    CAS  Google Scholar 

  69. A. Manikandan, D. K. Manimegalai, S. Moortheswaran, D. S. Arul Antony, J Supercond Nov Magn. 28(9), 2755 (2015).

  70. N.T. Tuan, D.Q. Trung, N.V. Quang, N.D. Hung, N.T. Khoi, P.T. Huy, P.F. Smet, K.W. Meert, D. Poelman, J. Lumin. 199, 39 (2018)

    CAS  Google Scholar 

  71. R. Viswanath, H.S. Bhojya Naika, G.S. Yashavanth Kumar, P.N. Prashanth Kumar, K.N. Harisha, M.C. Prabhakara, R. Praveen, Appl. Surf. Sci. 301, 126 (2014).

  72. R. Hempelmann 52. J.K. Salem, T. M. Hammad, S. Kuhn, I. Nahal, M. A.Draaz, N. K. Hejazy, J. Mater. Sci.: Mater. Electron. 25, 5188 (2014).

  73. S.Z. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvag, B.G. Svensson, Phys. Rev. B 75, 155104 (2007)

    Google Scholar 

  74. Z.K. Heiba, M.B. Mohamed, N.M. Farag, A.M. El-naggar, A.A. Albassam, J. Mater. Sci.: Mater. Electron (2020). https://doi.org/10.1007/s10854-020-03821-w

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zein K. Heiba or Mohamed Bakr Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B., Ahmed, S.I. et al. Structural, optical, and electronic properties of non-stoichiometric nano-ZnS1−x: Mnx. J Mater Sci: Mater Electron 31, 13447–13459 (2020). https://doi.org/10.1007/s10854-020-03898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03898-3

Navigation