Skip to main content
Log in

Modified polymer optical fiber sensors for crude oil refractive index monitoring

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The oil concentration as a petroleum quality parameter is an eternal mystery that determines the oil value. We report detection of crude oil refractive index (RI) changes by modified polymer optical fiber (POF) sensor which is prepared via removing the majority of cladding part until ~ 100 nm thickness remains followed by the deposition of discontinuous silver (Ag) nanofilm as an inner layer (~ 20 nm thicknesses) and coating with different shapes of zinc oxide (ZnO) nanostructures including nanoparticles and horizontally and vertically oriented nanorods as an outer layer. Upon conversion from ZnO nanoparticles to vertically oriented ZnO nanorods, the rms roughness, optical band gap, and light transmittance are varied from ~ 23 to ~ 346 nm, ~ 3.45 to ~ 3.20 eV, and 31 to 27%, respectively. The higher sensing performance is obtained for the probe coated with vertically aligned ZnO nanorods at near-infrared wavelength and the value for intensity and wavelength sensitivity are 38 dB/RIU and 78 nm/RIU, respectively. This superior performance is originated from deep penetration of evanescent wave, high surface volume ratio, good crystallinity, adhesive interaction with crude oil molecules, large surface roughness, and high-order dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.A. Mohamed, D.M. Beshir, A.A. Rabah, J. Pet. Technol. Altern. Fuels 5, 26 (2014)

    Article  Google Scholar 

  2. B. Yang, B. Yang, J. Zhang, Y. Yin, Y. Niu, M. Ding, Sensors 19, 96 (2019)

    Article  Google Scholar 

  3. B.D. Meshram, A.K. Agrawal, S. Adil, S. Ranvir, K.K. Sande, Int. J. Curr. Microbiol. Appl. Sci. 7, 3305–3324 (2018)

    Article  Google Scholar 

  4. B. Yang, J. Zhang, Y. Yin, Y. Niu, M. Ding, Sensors 19, 96 (2019)

    Article  Google Scholar 

  5. Y. Xu, P. Bai, X. Zhou et al., Adv. Opt. Mater. 7, 1801433 (2019)

    Article  Google Scholar 

  6. B. Xu, J. Huang, X. Xu, A. Zhou, L. Ding, ACS Appl. Mater. Interfaces 11, 40868 (2019)

    Article  CAS  Google Scholar 

  7. C.-C. Huang, T.-C. Sun, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  8. J.T. Kim, J. Song, H. Ryu, C.S. Ah, Adv. Opt. Mater. (2019). https://doi.org/10.1002/adom.201901464

    Article  Google Scholar 

  9. F. Sequeira, N. Cennamo, A. Rudnitskaya, R. Nogueira, L. Zeni, L. Bilro, Sensors 19, 2476 (2019)

    Article  CAS  Google Scholar 

  10. Z. Guo, F. Chu, J. Fan et al., Sens. Rev. 39, 352 (2019)

    Article  Google Scholar 

  11. X. Lu, P.J. Thomas, J.O. Hellevang, Sensors 19, 2876 (2019)

    Article  CAS  Google Scholar 

  12. M. Zhang, G. Zhu, L. Lu, X. Lou, L. Zhu, Opt. Fiber Technol. 48, 297–302 (2019)

    Article  CAS  Google Scholar 

  13. C. Teng, H. Deng, H. Liu, H. Yang, L. Yuan, J. Zheng, S. Deng, Photonics 6, 40 (2019)

    Article  CAS  Google Scholar 

  14. N. Jing, J. Zhou, K. Li, Z. Wang, J. Zheng, P. Xue, IEEE Sens. J. 19, 5665–5669 (2019)

    Article  CAS  Google Scholar 

  15. J. Yang, C. Guan, Z. Yu, M. Yang, J. Shi, P. Wang, L. Yuan, Sens. Actuators B 305, 127555 (2020)

    Article  Google Scholar 

  16. S. Sebastian, S. Sridhar, P.S. Prasad, S. Asokan, Appl. Opt. 58, 115–121 (2019)

    Article  CAS  Google Scholar 

  17. P. Xue, F. Yu, Y. Cao, J. Zheng, IEEE Sens. J. 19(17), 7434–7439 (2019)

    Article  CAS  Google Scholar 

  18. N. Luan, H. Han, L. Zhao, J. Liu, J. Yao, Opt. Mater. Exp. 9, 819–825 (2019)

    Article  CAS  Google Scholar 

  19. J. Janting, J. Pedersen, R. Inglev, G. Woyessa, K. Nielsen, O. Bang, J. Lightwave Technol. 37(18), 4469–4479 (2019)

    Article  CAS  Google Scholar 

  20. T. Ayupova, M. Sypabekova, C. Molardi, A. Bekmurzayeva, M. Shaimerdenova, K. Dukenbayev, D. Tosi, Sensors 19, 39 (2019)

    Article  Google Scholar 

  21. C. Broadway, R. Min, A.G. Leal-Junior, C. Marques, C. Caucheteur, J. Lightwave Technol. 37, 2605 (2019)

    Article  CAS  Google Scholar 

  22. A. Rashid, N. Shamsuri, A. Surani, A. Hakim, K. Ismail, Optoelectron. Adv. Materials-Rapid Commun. 13, 63 (2019)

    CAS  Google Scholar 

  23. Y. Zhao, Z.-Q. Deng, Q. Wang, Sens. Actuators B 192, 229 (2014)

    Article  CAS  Google Scholar 

  24. J.-D. Shin, J. Park, IEEE Photonics Technol. Lett. 25, 1882 (2013)

    Article  Google Scholar 

  25. Z. Samavati, A. Samavati, A.F. Ismail, N. Yahya, M.A. Rahman, M.H.D. Othman, Opt. Laser Technol. 123, 105896 (2020)

    Article  CAS  Google Scholar 

  26. N. Cennamo, D. Massarotti, L. Conte, L. Zeni, Sensors 11, 11752 (2011)

    Article  Google Scholar 

  27. M. Goswami, N.C. Adhikary, S. Bhattacharjee, Optik 158, 1006 (2018)

    Article  CAS  Google Scholar 

  28. A. Shaheen, M. Ali, W. Othman, N. Tit, Sci. Rep. 9, 1 (2019)

    Article  CAS  Google Scholar 

  29. R. Marczak, F. Werner, J.-F. Gnichwitz, A. Hirsch, D.M. Guldi, W. Peukert, J. Phys. Chem. C 113, 4669 (2009)

    Article  CAS  Google Scholar 

  30. E.A. Taborda, C.A. Franco, S.H. Lopera, V. Alvarado, F.B. Cortes, Fuel 184, 222 (2016)

    Article  CAS  Google Scholar 

  31. L. Nkhaili, M. Elyaagoubi, A. Elmansouri et al., Spectrosc. Lett. 48, 536 (2015)

    Article  CAS  Google Scholar 

  32. C.-C. Ting, C.-H. Li, C.-Y. Kuo, C.-C. Hsu, H.-C. Wang, M.-H. Yang, Thin Solid Films 518, 4156 (2010)

    Article  CAS  Google Scholar 

  33. L. Jiao, D. Peng, Y. Liu, AIAA J. 56, 2903 (2018)

    Article  CAS  Google Scholar 

  34. I. Bunaziv, O.M. Akselsen, J. Frostevarg, A.F. Kaplan, J. Mater. Process. Technol. 256, 216 (2018)

    Article  CAS  Google Scholar 

  35. Z. Samavati, A. Samavati, A.F. Ismail, M.H.D. Othman, M.A. Rahman, Opt. Fiber Technol. 52, 101976 (2019)

    Article  CAS  Google Scholar 

  36. Q. Wang, Y. Liu, Measurement 130, 161 (2018)

    Article  Google Scholar 

  37. A. Gowri, A.S. Rajamani, B. Ramakrishna, V.V.R. Sai, Opt. Fiber Technol. 47, 15 (2019)

    Article  CAS  Google Scholar 

  38. F. De-Jun, L. Guan-Xiu, L. Xi-Lu, J. Ming-Shun, S. Qing-Mei, Appl. Opt. 53, 2007 (2014)

    Article  Google Scholar 

  39. D.K. Mahanta, S. Laskar, IEEE Sens. J. 18, 1506 (2017)

    Article  Google Scholar 

  40. S. Zhang, Y. Guo, T. Cheng, S. Li, J. Li, Optik 212, 164697 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Universiti Teknologi Malaysia and Universiti Teknologi Petronas via vote number R.J130000.7609.4C112. The authors would also like to thank Research Management Centre, Universiti Teknologi Malaysia, and Frontier Material Research Alliance for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zahra Samavati or Ahmad Fauzi Ismail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samavati, Z., Samavati, A., Ismail, A.F. et al. Modified polymer optical fiber sensors for crude oil refractive index monitoring. J Mater Sci: Mater Electron 31, 12089–12100 (2020). https://doi.org/10.1007/s10854-020-03754-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03754-4

Navigation