Skip to main content

Advertisement

Log in

Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT) ceramics have demonstrated excellent dielectric, ferroelectric, and piezoelectric properties in comparison to lead-based materials. The synthesis of pure and crystalline BCZT nanopowders at low temperatures of 25, 80, and 160 °C was reported previously by using a sol–gel method followed by a hydrothermal route. In this study, the structural, dielectric, and ferroelectric properties of sintered BCZT ceramics at 1250 °C/10 h were investigated. XRD measurements revealed the presence of a single perovskite phase at room temperature with the coexistence of the orthorhombic and tetragonal symmetries. The increase of grain size and the ceramic density in BCZT ceramics result in an enhancement of the dielectric and ferroelectric properties of BCZT ceramics. More interestingly, the synthesis temperature of BCZT powders with high dielectric and ferroelectric properties could be decreased to a low temperature of 160 °C, which is about 1200 °C lower when compared with solid-state reaction and 840 °C lower when compared with sol–gel methods. The BCZT ceramics elaborated at 160 °C revealed excellent electrical properties (dielectric constant, dielectric loss, remnant polarization, and maximal polarization of 12,085, 0.017, 8.59 µC/cm2, and 27.21 µC/cm2, respectively) and enhanced energy performances (recovered energy density and energy efficiency of 367.2 mJ/cm3 and 67.2%, respectively). Hence, the use of low-temperature hydrothermal processing can be encouraging for the synthesis of lead-free ceramics with high dielectric and ferroelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Zhou, H. Tang, H.A. Sodano, Adv. Mater. 26, 7547 (2014)

    CAS  Google Scholar 

  2. J. Koruza, A.J. Bell, T. Frömling, K.G. Webber, K. Wang, J. Rödel, J. Mater. 4, 13 (2018)

    Google Scholar 

  3. J. Gao, D. Xue, W. Liu, C. Zhou, X. Ren, Actuators 6, 24 (2017)

    Google Scholar 

  4. P.K. Panda, B. Sahoo, Ferroelectrics 474, 128 (2015)

    CAS  Google Scholar 

  5. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)

    Google Scholar 

  6. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Google Scholar 

  7. Z. Wang, J. Wang, X. Chao, L. Wei, B. Yang, D. Wang, Z. Yang, J. Mater. Sci. Mater. Electron. 27, 5047 (2016)

    CAS  Google Scholar 

  8. J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, J. Eur. Ceram. Soc. 35, 1785 (2015)

    CAS  Google Scholar 

  9. M.A. Rafiq, M.N. Rafiq, K. Venkata Saravanan, Ceram. Int. 41, 11436 (2015)

    CAS  Google Scholar 

  10. J. Shi, R. Zhu, X. Liu, B. Fang, N. Yuan, J. Ding, H. Luo, Materials (Basel). 10, 1093 (2017)

    Google Scholar 

  11. Z. Hanani, D. Mezzane, M. Amjoud, S. Fourcade, A.G. Razumnaya, I.A. Luk’yanchuk, M. Gouné, Superlattices Microstruct. 127, 109 (2019)

    CAS  Google Scholar 

  12. S. Hunpratub, S. Maensiri, P. Chindaprasirt, Ceram. Int. 40, 13025 (2014)

    CAS  Google Scholar 

  13. P. Jaimeewong, M. Promsawat, A. Watcharapasorn, S. Jiansirisomboon, Integr. Ferroelectr. 175, 25 (2016)

    CAS  Google Scholar 

  14. Z. Hanani, E.H. Ablouh, M.B. Amjoud, D. Mezzane, S. Fourcade, M. Gouné, Ceram. Int. 44, 10997 (2018)

    CAS  Google Scholar 

  15. C. Baek, J. E. Wang, S. Ryu, J. H. Kim, C. K. Jeong, K. Il Park, and D. K. Kim, RSC Adv. 7, 2851 (2017).

  16. T. Maiti, R. Guo, A.S. Bhalla, J. Appl. Phys. 100, 114109 (2006)

    Google Scholar 

  17. X. Ji, C. Wang, S. Zhang, R. Tu, Q. Shen, J. Shi, L. Zhang, J. Mater. Sci. Mater. Electron. 30, 12197 (2019)

    CAS  Google Scholar 

  18. C. Chen, Y. Wei, X. Jiao, D. Chen, Mater. Chem. Phys. 110, 186 (2008)

    CAS  Google Scholar 

  19. Z. Chen, Z. Li, J. Qiu, T. Zhao, J. Ding, X. Jia, W. Zhu, J. Xu, J. Eur. Ceram. Soc. 38, 1349 (2018)

    CAS  Google Scholar 

  20. G.K. Sahoo, R. Mazumder, J. Mater. Sci. Electron. 25, 3515 (2014)

    CAS  Google Scholar 

  21. D.S. Keeble, F. Benabdallah, P.A. Thomas, M. Maglione, J. Kreisel, Appl. Phys. Lett. 102, 092903 (2013)

    Google Scholar 

  22. Z. Hanani, D. Mezzane, M. Amjoud, A.G. Razumnaya, S. Fourcade, Y. Gagou, K. Hoummada, M. El Marssi, M. Gouné, J. Mater. Sci. Mater. Electron. 30, 6430 (2019)

    CAS  Google Scholar 

  23. A. A. Bokov, Z.-G. Ye, in Front. Ferroelectr. SE—4 (Springer US, Boston, MA, 2007), pp. 31–52.

  24. Y. Liu, Y. Pu, Z. Sun, Mater. Lett. 137, 128 (2014)

    CAS  Google Scholar 

  25. P. Bharathi, K.B.R. Varma, J. Appl. Phys. 116, 164107 (2014)

    Google Scholar 

  26. K. Uchino, S. Nomura, Ferroelectr. Lett. Sect. 44, 55 (1982)

    CAS  Google Scholar 

  27. C. Zhang, F. Chen, X. Zhong, Z. Ling, Z. Tang, G. Jian, J. Mater. Sci. Mater. Electron. 29, 16730 (2018)

    CAS  Google Scholar 

  28. D. Hennings, A. Scnell, G. Simon, J. Am. Ceram. Soc. 65, 539 (1982)

    CAS  Google Scholar 

  29. Y. Tian, X. Chao, L. Wei, P. Liang, Z. Yang, J. Appl. Phys. 113, 184107 (2013)

    Google Scholar 

  30. I. Coondoo, N. Panwar, D. Alikin, I. Bdikin, S.S. Islam, A. Turygin, V.Y. Shur, A.L. Kholkin, Acta Mater. 155, 331 (2018)

    CAS  Google Scholar 

  31. C.G.F. Stenger, A.J. Burggraaf, J. Phys. Chem. Solids 41, 17 (1980)

    CAS  Google Scholar 

  32. K.M. Sangwan, N. Ahlawat, R.S. Kundu, S. Rani, S. Rani, N. Ahlawat, S. Murugavel, J. Phys. Chem. Solids 117, 158 (2018)

    CAS  Google Scholar 

  33. Z. Hanani, S. Merselmiz, A. Danine, N. Stein, D. Mezzane, M. Amjoud, M. Lahcini, Y. Gagou, M. Spreitzer, D. Vengust, Z. Kutnjak, M. El Marssi, I.A. Luk ‘yanchuk, M. Gouné, J. Adv. Ceram. 9, 210 (2020)

    CAS  Google Scholar 

  34. W. Cai, Y. Fan, J. Gao, C. Fu, X. Deng, J. Mater. Sci. Mater. Electron. 22, 265 (2011)

    CAS  Google Scholar 

  35. Y. Tan, J. Zhang, Y. Wu, C. Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, H. Yan, Sci. Rep. 5, 9953 (2015)

    CAS  Google Scholar 

  36. J. Zhai, X. Yao, J. Shen, L. Zhang, H. Chen, J. Phys. D 37, 748 (2004)

    CAS  Google Scholar 

  37. Y. Huang, F. Li, H. Hao, F. Xia, H. Liu, S. Zhang, J. Mater. 5, 385 (2019)

    Google Scholar 

  38. V.S. Puli, D.K. Pradhan, I. Coondoo, N. Panwar, S. Adireddy, S. Luo, R.S. Katiyar, D.B. Chrisey, J. Phys. D 52, 255304 (2019)

    CAS  Google Scholar 

  39. K. Xu, P. Yang, W. Peng, L. Li, J. Alloys Compd. 829, 154516 (2020)

    CAS  Google Scholar 

  40. X. Ji, C. Wang, S. Li, S. Zhang, R. Tu, Q. Shen, J. Shi, L. Zhang, J. Mater. Sci. Mater. Electron. 29, 7592 (2018)

    CAS  Google Scholar 

  41. E. Chandrakala, J. Paul Praveen, B.K. Hazra, D. Das, Ceram. Int. 42, 4964 (2016)

    CAS  Google Scholar 

  42. X. Wang, P. Liang, X. Chao, Z. Yang, J. Am. Ceram. Soc. 98, 1506 (2015)

    CAS  Google Scholar 

  43. H. Kaddoussi, A. Lahmar, Y. Gagou, B. Manoun, J.N. Chotard, J.L. Dellis, Z. Kutnjak, H. Khemakhem, B. Elouadi, M. El Marssi, J. Alloys Compd. 713, 164 (2017)

    CAS  Google Scholar 

  44. S. Patel, D. Sharma, A. Singh, R. Vaish, J. Mater. 2, 75 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the generous financial support of CNRST Priority Program PPR 15/2015 and the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 778072. Z. K. and B. R. acknowledge Slovenian Research Agency grant J1-9147 and program P1-0125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouhair Hanani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanani, Z., Mezzane, D., Amjoud, M. et al. Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. J Mater Sci: Mater Electron 31, 10096–10104 (2020). https://doi.org/10.1007/s10854-020-03555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03555-9

Navigation