Skip to main content

Advertisement

Log in

Recent advancements in using perovskite single crystals for gamma-ray detection

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Perovskites in the form of polycrystalline thin films have been extensively studied in solar cell research over the past few years. Recently, monocrystalline perovskites have been discovered with great potentials for the use in radiation detection, in which higher energy photons (X-ray and gamma ray) or heavy charged alpha particles compared with low-energy visible light in solar cell research need to be detected. In this review, we summarize the state-of-the-art perovskite single crystals which have been investigated specifically for gamma photon detection. The physical, optical, and electrical properties will be reviewed and compared with today’s market-dominating gamma-ray detector materials, such as cadmium zinc telluride (CdZnTe) and its low-cost alternative cadmium zinc telluride selenium (CdZnTeSe) single crystals. Lastly, suggestions are proposed for the future development in this research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reproduced with permission from [34], Nature Publishing Group, Copyright 2015 (Color figure online)

Fig. 2

Reproduced with permission from [20], Nature Publishing Group, Copyright 2018

Fig. 3

Reproduced with permission from [38], Nature Publishing Group, Copyright 2016

Fig. 4

Reproduced with permission from [16], American Chemical Society, Copyright 2018

Fig. 5

Reproduced with permission from [16], American Chemical Society, Copyright 2018

Fig. 6

Reproduced with permission from [1], Nature Publishing Group, Copyright 2019

Fig. 7

Reproduced with permission from [62], German Chemical Society, Copyright 2019

Similar content being viewed by others

References

  1. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Sci. Rep. 9(1), 1–7 (2019)

    Google Scholar 

  2. S. del Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9(5), 3491–3526 (2009)

    Google Scholar 

  3. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, R.B. James, Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. 32(4–5), 103–189 (2001)

    Google Scholar 

  4. N.A. Baily, J.W. Mayer, A P-N junction semiconductor radiation detector for use with beta- and gamma-ray-emitting isotopes. Radiology 76, 116 (1961)

    CAS  Google Scholar 

  5. L.C. Johnson, D.L. Campbell, E.L. Hull, T.E. Peterson, Characterization of a high-purity germanium detector for small-animal SPECT. Phys. Med. Biol. 56(18), 5877–5888 (2011)

    Google Scholar 

  6. S. Abbaspour, B. Mahmoudian, J. Islamian, Cadmium telluride semiconductor detector for improved spatial and energy resolution radioisotopic imaging. World J. Nucl. Med. 16(2), 101 (2017)

    Google Scholar 

  7. V.M. Zaletin, V.P. Varvaritsa, Wide-bandgap compound semiconductors for X- or gamma-ray detectors. Russ. Microelectron. 40(8), 443–452 (2011)

    Google Scholar 

  8. A. Owens, Compound Semiconductor Radiation Detectors (CRC Press, Boca Raton, 2012)

    Google Scholar 

  9. Y. Eisen, A. Shor, I. Mardor, CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems. Nucl. Instrum. Methods Phys. Res. Sect. A 428(1), 158–170 (1999)

    CAS  Google Scholar 

  10. L.S. Varnell, W.A. Mahoney, E.L. Hull, J.F. Butler, A.S. Wong, Radiation effects in CdZnTe gamma-ray detectors produced by 199-MeV protons. Proc. SPIE Int. Soc. Opt. Eng. 2806, 424–431 (1996)

    CAS  Google Scholar 

  11. Q. Li, M. Beilicke, K. Lee, A. Garson, Q. Guo, J. Martin, Y. Yin, P. Dowkontt, G. De Geronimo, I. Jung et al., Study of thick CZT detectors for X-ray and gamma-ray astronomy. Astropart. Phys. 34(10), 769–777 (2011)

    CAS  Google Scholar 

  12. A.E. Bolotnikov, K. Ackley, G.S. Camarda, Y. Cui, J.F. Eger, G. De Geronimo, C. Finfrock, J. Fried, A. Hossain, W. Lee et al., High-efficiency CdZnTe gamma-ray detectors. IEEE Trans. Nucl. Sci. 62, 3193–3198 (2015)

    CAS  Google Scholar 

  13. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Sci. Rep. 9(1), 1–7 (2019)

    Google Scholar 

  14. Z. Chen, B. Turedi, A.Y. Alsalloum, C. Yang, X. Zheng, I. Gereige, A. Alsaggaf, O.F. Mohammed, O.M. Bakr, Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett. 4(6), 1258–1259 (2019)

    CAS  Google Scholar 

  15. H. Kim, H.R. Byun, M.S. Jeong, Synthesis and characterization of multiple-cation Rb(MAFA)PbI3 perovskite single crystals. Sci. Rep. 9(1), 1–7 (2019)

    Google Scholar 

  16. Y. He, W. Ke, G.C.B. Alexander, K.M. McCall, D.G. Chica, Z. Liu, I. Hadar, C.C. Stoumpos, B.W. Wessels, M.G. Kanatzidis, Resolving the energy of γ-ray photons with MAPbI3 single crystals. ACS Photonics 5(10), 4132–4138 (2018)

    CAS  Google Scholar 

  17. S. Mirershadi, A. Javad, S. Ahmadi-Kandjani, Efficient single-layer light-emitting diodes based on organic-inorganic lead halide perovskite and tuning luminescence properties. J. Theor. Appl. Phys. 13(2), 133–140 (2019)

    Google Scholar 

  18. Z.K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014)

    CAS  Google Scholar 

  19. L. Li, X. Liu, H. Zhang, B. Zhang, W. Jie, P.J. Sellin, C. Hu, G. Zeng, Y. Xu, Enhanced X-ray sensitivity of MAPbBr 3 detector by tailoring the interface-states density. ACS Appl. Mater. Interfaces 11(7), 7522–7528 (2019)

    CAS  Google Scholar 

  20. Y. He, L. Matei, H.J. Jung, K.M. McCall, M. Chen, C.C. Stoumpos, Z. Liu, J.A. Peters, D.Y. Chung, B.W. Wessels et al., High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr 3 single crystals. Nat. Commun. 9(1), 1–8 (2018)

    Google Scholar 

  21. N. Kumari, S.R. Patel, J.V. Gohel, Superior efficiency achievement for FAPbI3 -perovskite thin film solar cell by optimization with response surface methodology technique and partial replacement of Pb by Sn. Optik (Stuttg) 176, 262–277 (2019)

    CAS  Google Scholar 

  22. Y. Li, W. Shao, X. Ouyang, X. Ouyang, Z. Zhu, H. Zhang, B. Liu, Q. Xu, Scintillation properties of perovskite single crystals. J. Phys. Chem. C 123(28), 17449–17453 (2019)

    CAS  Google Scholar 

  23. S. Yakunin, D.N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh, O. Nazarenko, D. Kreil, T. Nauser, M.V. Kovalenko, Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photonics 10(9), 585–589 (2016)

    CAS  Google Scholar 

  24. Z. Liu, J.A. Peters, C.C. Stoumpos, M. Sebastian, B.W. Wessels, J. Im, A.J. Freeman, M.G. Kanatzidis, Heavy metal ternary halides for room-temperature X-ray and gamma-ray detection. Hard X-Ray Gamma-Ray Neutron Detect. Phys. 8852, 88520A (2013)

    Google Scholar 

  25. K.X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, J.J. Berry, Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1(2), 360–366 (2016)

    CAS  Google Scholar 

  26. L. Wang, G.D. Yuan, R.F. Duan, F. Huang, T.B. Wei, Z.Q. Liu, J.X. Wang, J.M. Li, Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3-yXy) single crystals and photodetector applications. AIP Adv. 6(4), 45115 (2016)

    Google Scholar 

  27. W.G. Li, H.S. Rao, B.X. Chen, X.D. Wang, D. Kuang, A. Bin, Formamidinium-methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability. J. Mater. Chem. A 5(36), 19431–19438 (2017)

    CAS  Google Scholar 

  28. H. Wei, D. Desantis, W. Wei, Y. Deng, D. Guo, T.J. Savenije, L. Cao, J. Huang, Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16(8), 826–833 (2017)

    CAS  Google Scholar 

  29. F. Cordero, F. Craciun, F. Trequattrini, A. Generosi, B. Paci, A.M. Paoletti, G. Pennesi, Stability of cubic FAPbI3 from X-ray diffraction, anelastic, and dielectric measurements. J. Phys. Chem. Lett. 10(10), 2463–2469 (2019)

    CAS  Google Scholar 

  30. X. Zheng, C. Wu, S.K. Jha, Z. Li, K. Zhu, S. Priya, Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Lett. 1(5), 1014–1020 (2016)

    CAS  Google Scholar 

  31. W. Ming, S. Chen, M.H. Du, Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH3NH3PbI3. J. Mater. Chem. A 4(43), 16975–16981 (2016)

    CAS  Google Scholar 

  32. C. Xin, P. Veber, M. Guennou, C. Toulouse, N. Valle, M. Ciomaga Hatnean, G. Balakrishnan, R. Haumont, R. Saint Martin, M. Velazquez et al., Single crystal growth of BaZrO3 from the melt at 2700 °C using optical floating zone technique and growth prospects from BaB2O4 flux at 1350 °C. CrystEngComm 21(3), 502–512 (2019)

    CAS  Google Scholar 

  33. C. Guguschev, D. Klimm, M. Brützam, T.M. Gesing, M. Gogolin, H. Paik, A. Dittmar, V.J. Fratello, D.G. Schlom, Single crystal growth and characterization of Ba2ScNbO6—a novel substrate for BaSnO3 Films. J. Cryst. Growth 528, 125263 (2019)

    CAS  Google Scholar 

  34. M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. MacUlan et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 23955 (2015)

    Google Scholar 

  35. S. Li, C. Zhang, J.J. Song, X. Xie, J.Q. Meng, S. Xu, Metal halide perovskite single crystals: from growth process to application. Crystals 8(5), 220 (2018)

    Google Scholar 

  36. Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia, X. Tao, Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. CrystEngComm 17(3), 665–670 (2015)

    CAS  Google Scholar 

  37. J. Zhou, H.H. Fang, H. Wang, R. Meng, H. Zhou, M.A. Loi, Y. Zhang, Understanding the passivation mechanisms and opto-electronic spectral response in methylammonium lead halide perovskite single crystals. ACS Appl. Mater. Interfaces 10(41), 35580–35588 (2018)

    CAS  Google Scholar 

  38. H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.H. Fang, C. Wang, B.R. Ecker, Y. Gao, M.A. Loi, L. Cao et al., Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10(5), 333–339 (2016)

    CAS  Google Scholar 

  39. Q. Han, S.H. Bae, P. Sun, Y.T. Hsieh, Y. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li et al., Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28(11), 2253–2258 (2016)

    CAS  Google Scholar 

  40. Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren, H. Xu, Z. Yang, S.F. Liu, 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 4(11), 1829–1837 (2016)

    CAS  Google Scholar 

  41. H. Zhang, X. Liu, J. Dong, H. Yu, C. Zhou, B. Zhang, Y. Xu, W. Jie, Centimeter-sized inorganic lead halide perovskite CsPbBr3 crystals grown by an improved solution method. Cryst. Growth Des. 17(12), 6426–6431 (2017)

    CAS  Google Scholar 

  42. M.I. Saidaminov, M.A. Haque, J. Almutlaq, S. Sarmah, X.H. Miao, R. Begum, A.A. Zhumekenov, I. Dursun, N. Cho, B. Murali et al., Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection. Adv. Opt. Mater. 5(2), 1600704 (2017)

    Google Scholar 

  43. O. Nazarenko, S. Yakunin, V. Morad, I. Cherniukh, M.V. Kovalenko, Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater. 9(4), 373 (2017)

    Google Scholar 

  44. M. Prokesch, S.A. Soldner, A.G. Sundaram, CdZnTe detectors for gamma spectroscopy and X-ray photon counting at 250×106 photons/(mm2s). J. Appl. Phys. 124(4), 44503 (2018)

    Google Scholar 

  45. H.Y. Cho, J.H. Lee, Y.K. Kwon, J.Y. Moon, C.S. Lee, Measurement of the drift mobilities and the mobility-lifetime products of charge carriers in a CdZnTe crystal by using a transient pulse technique. J. Instrum. 6(1), 1025 (2011)

    Google Scholar 

  46. M. Rejhon, J. Franc, V. Dědič, J. Pekárek, U.N. Roy, R. Grill, R.B. James, Influence of deep levels on the electrical transport properties of CdZnTeSe detectors. J. Appl. Phys. 124(23), 235702 (2018)

    Google Scholar 

  47. M. Rejhon, V. Dedic, L. Beran, U.N. Roy, J. Franc, R.B. James, Investigation of deep levels in CdZnTeSe crystal and their effect on the internal electric field of CdZnTeSe gamma-ray detector. IEEE Trans. Nucl. Sci. 66(8), 1952–1958 (2019)

    CAS  Google Scholar 

  48. A. Mirzaei, J.S. Huh, S.S. Kim, H.W. Kim, Room temperature hard radiation detectors based on solid state compound semiconductors: an overview. Electron. Mater. Lett. 14(3), 261–287 (2018)

    CAS  Google Scholar 

  49. R. Devanathan, L.R. Corrales, F. Gao, W.J. Weber, Signal variance in gamma-ray detectors—a review. Nucl. Instruments Methods Phys. Res. Sect. A 565(2), 637–649 (2006)

    CAS  Google Scholar 

  50. R.H. Bube, Trap density determination by space-charge-limited currents. J. Appl. Phys. 33(5), 1733–1737 (1962)

    CAS  Google Scholar 

  51. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths %3e 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015)

    CAS  Google Scholar 

  52. M. Henini, Molecular Beam Epitaxy: From Research to Mass Production, 2nd edn. (Elsevier, Amsterdam, 2018)

    Google Scholar 

  53. D.K. Schroder, Advanced Mos Devices (Modular Series on Solid State Devices) (Addison-Wesley, Boston, 1987)

    Google Scholar 

  54. J. Li, Q. Dong, N. Li, L. Wang, Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv. Energy Mater. 7(14), 1602922 (2017)

    Google Scholar 

  55. A. Guerrero, J. You, C. Aranda, Y.S. Kang, G. Garcia-Belmonte, H. Zhou, J. Bisquert, Y. Yang, Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10(1), 218–224 (2016)

    CAS  Google Scholar 

  56. K.O. Kim, T.J. Kwon, J.K. Kim, J.H. Ha, A new approach for evaluating the mobility-lifetime products of electron-hole pairs in semiconductor detectors. J. Korean Phys. Soc. 59(1), 20–26 (2011)

    CAS  Google Scholar 

  57. M.Z. Kabir, Effects of charge carrier trapping on polycrystalline PbO X-ray imaging detectors. J. Appl. Phys. 104(7), 074506 (2008)

    Google Scholar 

  58. R.A. Street, S.E. Ready, K. Van Schuylenbergh, J. Ho, J.B. Boyce, P. Nylen, K. Shah, L. Melekhov, H. Hermon, Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors. J. Appl. Phys. 91(5), 3345–3355 (2002)

    CAS  Google Scholar 

  59. A. Many, High-field effects in photoconducting cadmium sulphide. J. Phys. Chem. Solids 26(3), 575–578 (1965)

    CAS  Google Scholar 

  60. D.N. Dirin, I. Cherniukh, S. Yakunin, Y. Shynkarenko, M.V. Kovalenko, Solution-grown CsPbBr 3 perovskite single crystals for photon detection. Chem. Mater. 28(23), 8470–8474 (2016)

    CAS  Google Scholar 

  61. A. Zappettini, M. Zha, L. Marchini, D. Calestani, R. Mosca, E. Gombia, L. Zanotti, M. Zanichelli, M. Pavesi, N. Auricchio, et al. Boron Oxide encapsulated vertical bridgman grown CdZnTe crystals as X-ray detector material. (Institute of Electrical and Electronics Engineers (IEEE), 2009), pp 118–121.

  62. Y. Huang, L. Qiao, Y. Jiang, T. He, R. Long, F. Yang, L. Wang, X. Lei, M. Yuan, J. Chen, A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector. Angew. Chemie 58(49), 17834–17842 (2019)

    CAS  Google Scholar 

  63. W. Peng, X. Miao, V. Adinolfi, E. Alarousu, O. El Tall, A.-H. Emwas, C. Zhao, G. Walters, J. Liu, O. Ouellette et al., Engineering of CH3NH3PbI3 perovskite crystals by alloying large organic cations for enhanced thermal stability and transport properties. Angew. Chemie 128(36), 10844–10848 (2016)

    Google Scholar 

  64. Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu et al., Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27(35), 5176–5183 (2015)

    CAS  Google Scholar 

  65. M. Shirayama, M. Kato, T. Miyadera, T. Sugita, T. Fujiseki, S. Hara, H. Kadowaki, D. Murata, M. Chikamatsu, H. Fujiwara, Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air. J. Appl. Phys. 119(11), 115501 (2016)

    Google Scholar 

  66. M. Wang, Exploring stability of formamidinium lead trihalide for solar cell application. Sci. Bull. 62(4), 249–255 (2017)

    CAS  Google Scholar 

  67. S. Jiang, Y. Luan, J.I. Jang, T. Baikie, X. Huang, R. Li, F.O. Saouma, Z. Wang, T.J. White, J. Fang, Phase transitions of formamidinium lead iodide perovskite under pressure. J. Am. Chem. Soc. 140(42), 13952–13957 (2018)

    CAS  Google Scholar 

  68. Y. Fan, H. Meng, L. Wang, S. Pang, Review of stability enhancement for formamidinium-based perovskites. Sol. RRL 3(9), 1900215 (2019)

    Google Scholar 

  69. R.L.Z. Hoye, L. Eyre, F. Wei, F. Brivio, A. Sadhanala, S. Sun, W. Li, K.H.L. Zhang, J.L. MacManus-Driscoll, P.D. Bristowe et al., Fundamental carrier lifetime exceeding 1 μs in Cs2AgBiBr6 double perovskite. Adv. Mater. Interfaces 5(15), 1800464 (2018)

    Google Scholar 

  70. N. Sakai, A.A. Haghighirad, M.R. Filip, P.K. Nayak, S. Nayak, A. Ramadan, Z. Wang, F. Giustino, H.J. Snaith, Solution-processed cesium Hexabromopalladate(IV), Cs2PdBr 6, for optoelectronic applications. J. Am. Chem. Soc. 139(17), 6030–6033 (2017)

    CAS  Google Scholar 

  71. Z. Deng, F. Wei, S. Sun, G. Kieslich, A.K. Cheetham, P.D. Bristowe, Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach. J. Mater. Chem. A 4(31), 12025–12029 (2016)

    CAS  Google Scholar 

  72. Q. Sun, W.J. Yin, Thermodynamic stability trend of cubic perovskites. J. Am. Chem. Soc. 139(42), 14905–14908 (2017)

    CAS  Google Scholar 

  73. M.H. Futscher, J.M. Lee, L. McGovern, L.A. Muscarella, T. Wang, M.I. Haider, A. Fakharuddin, L. Schmidt-Mende, B. Ehrler, Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements. Mater. Horizons 6(7), 1497–1503 (2019)

    CAS  Google Scholar 

  74. S. Meloni, T. Moehl, W. Tress, M. Franckeviius, M. Saliba, Y.H. Lee, P. Gao, M.K. Nazeeruddin, S.M. Zakeeruddin, U. Rothlisberger et al., Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 7, 1–9 (2016)

    Google Scholar 

  75. J.W. Lee, S.G. Kim, J.M. Yang, Y. Yang, N.G. Park, Verification and mitigation of ion migration in perovskite solar cells. APL Mater. 7(4), 41111 (2019)

    Google Scholar 

  76. V.F. Dvoryankin, G.G. Dvoryankina, A.A. Kudryashov, A.G. Petrov, V.D. Golyshev, S.V. Bykova, X-ray sensitivity of Cd0.9Zn0.1Te detectors. Tech. Phys. 55(2), 306–308 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the U.S. Nuclear Regulatory Commission (NRC). The authors would like to thank Dr. Katie Homar at the Graduate School of NCSU for the kind help in providing suggestions for manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Yang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yang, G. Recent advancements in using perovskite single crystals for gamma-ray detection. J Mater Sci: Mater Electron 32, 12758–12770 (2021). https://doi.org/10.1007/s10854-020-03519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03519-z

Navigation