Skip to main content
Log in

Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly(acrylic acid) microgel shell for efficient removal of methylene blue under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nowadays, constructing a narrow bandgap nanocomposite photocatalyst that can degrade contamination under visible light is critical but challenging. In this report, poly (acrylic acid) microgel (PAA) based nanocomposites (Ag@CuO/PAA NC) were constructed via free radical solution polymerization by varying the concentration of silver-doped copper oxide nanoparticles (Ag@CuO NPs) from 0 to 12%. As prepared Ag@CuO and Ag@CuO/PAA were characterized by X‐ray diffraction spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy. The size of Ag@CuO NPs was found to be 30–50 nm. The photocatalytic activity of CuO is increased by Ag doping and C3 NPs show the best photodegradation of methylene blue (MB). Then, 4% of Ag@CuO nanoparticles were incorporated into PAA microgel, the resultant nanocomposite showed a drastic increase in photodegradation of MB. Ag@CuO/PAA NC completely degraded dye in only 30 min which was degraded up to 65% in 60 min. by Ag@CuO NPs. The successful combination of PAA with Ag@CuO boosts the photocatalytic activity because microgel provides a large surface to adsorb pollutants. Ag@CuO/PAA NC reused successfully for photodegradation of dye due to the recycling ability of microgels. This study gives a good insight into planning a significant visible‐light‐driven photocatalyst for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.-W. Lv, J.-M. Liu, N. Zhao, C.-Y. Li, Z.-H. Wang, S. Wang, A novel cobalt doped MOF-based photocatalyst with great applicability as an efficient mediator of peroxydisulfate activation for enhanced degradation of organic pollutants. New J. Chem. (2020). https://doi.org/10.1039/C9NJ05503G

    Article  Google Scholar 

  2. W. Peng, C. Yang, J. Yu, Bi2O3 and g-C3N4 quantum dot modified anatase TiO2 heterojunction system for degradation of dyes under sunlight irradiation. RSC Adv. 10, 1181–1190 (2020)

    CAS  Google Scholar 

  3. J. Xiao, Y. Xie, H. Cao, Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 121, 1–17 (2015)

    CAS  Google Scholar 

  4. Z. Bian, F. Cao, J. Zhu, H. Li, Plant uptake-assisted round-the-clock photocatalysis for complete purification of aquaculture wastewater using sunlight. Environ. Sci. Technol. 49, 2418–2424 (2015)

    CAS  Google Scholar 

  5. M. Ranson, B. Cox, C. Keenan, D. Teitelbaum, The impact of pollution prevention on toxic environmental releases from U.S. manufacturing facilities. Environ. Sci. Technol. 49, 12951–12957 (2015)

    CAS  Google Scholar 

  6. U. von Gunten, Oxidation processes in water treatment: are we on track? Environ. Sci. Technol. 52, 5062–5075 (2018)

    Google Scholar 

  7. B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem. Eng. Process. Process Intensif. 109, 178–189 (2016)

    CAS  Google Scholar 

  8. X. Chen, C. Yu, X. Guo, Q. Bi, M. Sajjad, Y. Ren, X. Zhou, Z. Liu, Cu2O nanoparticles and multi-branched nanowires as anodes for lithium-ion batteries. NANO 13, 1850103 (2018)

    CAS  Google Scholar 

  9. C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D. J. Chem. Technol. Biotechnol. 83, 769–776 (2008)

    CAS  Google Scholar 

  10. D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res. 139, 118–131 (2018)

    CAS  Google Scholar 

  11. K.E. O’Shea, D.D. Dionysiou, Advanced oxidation processes for water treatment. J. Phys. Chem. Lett. 3, 2112–2113 (2012)

    Google Scholar 

  12. B. Qiu, M. Xing, J. Zhang, Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136, 5852–5855 (2014)

    CAS  Google Scholar 

  13. J.C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chem. Soc. Rev. 43, 765–778 (2014)

    CAS  Google Scholar 

  14. Z. Xie, Y. Zhou, L. Guan, S. Muhammad, Y. Jiang, S. Zhang, C. Yu, Y. Jiao, S. Zhang, Y. Ren, X. Zhou, Z. Liu, Effect of impurity in Cu2O nanowires on the degradation of methyl orange. J. Mater. Sci.: Mater. Electron. 31, 3817–3824 (2020)

    CAS  Google Scholar 

  15. S. Singh, K.C. Barick, D. Bahadur, Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. J. Mater. Chem. A 1, 3325–3333 (2013)

    CAS  Google Scholar 

  16. P. Verma, S.K. Samanta, Facile synthesis of TiO2–PC composites for enhanced photocatalytic abatement of multiple pollutant dye mixtures: a comprehensive study on the kinetics, mechanism, and effects of environmental factors. Res. Chem. Intermed. 44, 1963–1988 (2018)

    CAS  Google Scholar 

  17. M. Waqas, S. Iqbal, A. Bahadur, A. Saeed, M. Raheel, M. Javed, Designing of a spatially separated hetero-junction pseudobrookite (Fe2TiO5-TiO2) yolk-shell hollow spheres as efficient photocatalyst for water oxidation reaction. Appl. Catal. B 219, 30–35 (2017)

    CAS  Google Scholar 

  18. W. Raza, D. Bahnemann, M. Muneer, A green approach for degradation of organic pollutants using rare earth metal doped bismuth oxide. Catal. Today 300, 89–98 (2018)

    CAS  Google Scholar 

  19. M. Rao, J. Wu, A.M. Asiri, A. Sambandam, Photocatalytic degradation of Tartrazine dye using CuO straw-sheaf-like nanostructures. Water Sci. Technol. 75, wst2017008 (2017)

    Google Scholar 

  20. S. Bennici, A. Gervasini, Catalytic activity of dispersed CuO phases towards nitrogen oxides (N2O, NO, and NO2). Appl. Catal. B 62, 336–344 (2006)

    CAS  Google Scholar 

  21. X. Zhang, A. Gu, G. Wang, Y. Wei, W. Wang, H. Wu, B. Fang, Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free glucose sensor. CrystEngComm 12, 1120–1126 (2010)

    CAS  Google Scholar 

  22. L. Xu, C. Srinivasakannan, J. Peng, L. Zhang, D. Zhang, Synthesis of Cu-CuO nanocomposite in microreactor and its application to photocatalytic degradation. J. Alloy. Compd. 695, 263–269 (2017)

    CAS  Google Scholar 

  23. A.T. Babu, R. Antony, Green synthesis of silver doped nano metal oxides of zinc & copper for antibacterial properties, adsorption, catalytic hydrogenation & photodegradation of aromatics. J. Environ. Chem. Eng. 7, 102840 (2019)

    CAS  Google Scholar 

  24. S. Taheri, G. Baier, P. Majewski, M. Barton, R. Förch, K. Landfester, K. Vasilev, Synthesis and antibacterial properties of a hybrid of silver–potato starch nanocapsules by miniemulsion/polyaddition polymerization. J. Mater. Chem. B 2, 1838–1845 (2014)

    CAS  Google Scholar 

  25. J. Khan, M. Siddiq, B. Akram, M.A. Ashraf, In-situ synthesis of CuO nanoparticles in P(NIPAM-co-AAA) microgel, structural characterization, catalytic and biological applications. Arab. J. Chem. 11, 897–909 (2018)

    CAS  Google Scholar 

  26. K. Naseem, R. Begum, W. Wu, A. Irfan, Z.H. Farooqi, Advancement in multi-functional poly(styrene)-poly(N-isopropylacrylamide) based core-shell microgels and their applications. Polym. Rev. 58, 288–325 (2018)

    CAS  Google Scholar 

  27. K. Naseem, Z.H. Farooqi, R. Begum, M. Ghufran, M.Z.U. Rehman, J. Najeeb, A. Irfan, A.G. Al-Sehemi, Poly(N-isopropylmethacrylamide-acrylic acid) microgels as adsorbent for removal of toxic dyes from aqueous medium. J. Mol. Liq. 268, 229–238 (2018)

    CAS  Google Scholar 

  28. L. Zhu, H. Song, G. Wang, Z. Zeng, Q. Xue, Symmetrical polysulfone/poly(acrylic acid) porous membranes with uniform wormlike morphology and pH responsibility: preparation, characterization and application in water purification. J. Membr. Sci. 549, 515–522 (2018)

    CAS  Google Scholar 

  29. V.K. Garg, M. Amita, R. Kumar, R. Gupta, Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste. Dyes Pigm. 63, 243–250 (2004)

    CAS  Google Scholar 

  30. K. Phiwdang, S. Suphankij, W. Mekprasart, W. Pecharapa, Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia 34, 740–745 (2013)

    CAS  Google Scholar 

  31. S. Das, T.L. Alford, Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing. J. Appl. Phys. 113, 244905 (2013)

    Google Scholar 

  32. J. Lu, H. Wang, S. Dong, F. Wang, Y. Dong, Effect of Ag shapes and surface compositions on the photocatalytic performance of Ag/ZnO nanorods. J. Alloy. Compd. 617, 869–876 (2014)

    CAS  Google Scholar 

  33. K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9, 217–227 (2016)

    CAS  Google Scholar 

  34. P. Devagi, T.C. Suresh, R.V. Sandhiya, M. Sairandhry, S. Bharathi, P. Velmurugan, M. Radhakrishnan, T. Sathiamoorthi, G. Suresh, Actinobacterial-mediated fabrication of silver nanoparticles and their broad spectrum antibacterial activity against clinical pathogens. J. Nanosci. Nanotechnol. 20, 2902–2910 (2020)

    CAS  Google Scholar 

  35. F.O. Kup, S. Coskuncay, F. Duman, Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): evaluation of their antibacterial, antioxidant and drug release system activities. Mater. Sci. Eng. C-Mater. Biol. Appl. 107, 11 (2020)

    Google Scholar 

  36. J.W. Zhang, M.S. Azam, C. Shi, J. Huang, B. Bin, Q.X. Liu, H.B. Zeng, Poly(acrylic acid) functionalized magnetic graphene oxide nanocomposite for removal of methylene blue. Rsc Adv. 5, 32272–32282 (2015)

    CAS  Google Scholar 

  37. T. Shu, Q.M. Shen, L. Su, X.J. Zhang, M.J. Serpe, In situ synthesis of CuS nanoparticle-doped poly(N-isopropylacrylamide)-based microgels for near-infrared triggered photothermal therapy. Acs Appl. Nano Mater. 1, 1776–1783 (2018)

    CAS  Google Scholar 

  38. F. Bibi, M. Ajmal, F. Naseer, Z.H. Farooqi, M. Siddiq, Preparation of magnetic microgels for catalytic reduction of 4-nitrophenol and removal of methylene blue from aqueous medium. Int. J. Environ. Sci. Technol. 15, 863–874 (2018)

    CAS  Google Scholar 

  39. D. Meinderink, K.J.R. Nolkemper, J. Bürger, A.G. Orive, J.K.N. Lindner, G. Grundmeier, Spray coating of poly(acrylic acid)/ZnO tetrapod adhesion promoting nanocomposite films for polymer laminates. Surf. Coat. Technol. 375, 112–122 (2019)

    CAS  Google Scholar 

  40. L. Shen, Y. Zhang, W. Yu, R. Li, M. Wang, Q. Gao, J. Li, H. Lin, Fabrication of hydrophilic and antibacterial poly(vinylidene fluoride) based separation membranes by a novel strategy combining radiation grafting of poly(acrylic acid) (PAA) and electroless nickel plating. J. Colloid Interface Sci. 543, 64–75 (2019)

    CAS  Google Scholar 

  41. K. Sahu, B. Satpati, R. Singhal, S. Mohapatra, Enhanced catalytic activity of CuO/Cu2O hybrid nanowires for reduction of 4-nitrophenol in water. J. Phys. Chem. Solids 136, 109143 (2020)

    CAS  Google Scholar 

  42. R. Katal, S. Masudy-panah, E.Y.J. Kong, N. Dasineh Khiavi, M.H.D. Abadi Farahani, X. Gong, Nanocrystal-engineered thin CuO film photocatalyst for visible-light-driven photocatalytic degradation of organic pollutant in aqueous solution. Catal. Today 340, 236–244 (2020)

    CAS  Google Scholar 

  43. S. Iqbal, A. Bahadur, A. Saeed, K. Zhou, M. Shoaib, M. Waqas, Electrochemical performance of 2D polyaniline anchored CuS/graphene nano-active composite as anode material for lithium-ion battery. J. Colloid Interface Sci. 502, 16–23 (2017)

    CAS  Google Scholar 

  44. K. Bogusz, M. Zuchora, V. Sencadas, M. Tehei, M. Lerch, N. Thorpe, A. Rosenfeld, S.X. Dou, H.K. Liu, K. Konstantinov, Synthesis of methotrexate-loaded tantalum pentoxide–poly(acrylic acid) nanoparticles for controlled drug release applications. J. Colloid Interface Sci. 538, 286–296 (2019)

    CAS  Google Scholar 

  45. T.S. Anirudhan, F. Shainy, J. Christa, Synthesis and characterization of polyacrylic acid- grafted-carboxylic graphene/titanium nanotube composite for the effective removal of enrofloxacin from aqueous solutions: adsorption and photocatalytic degradation studies. J. Hazard. Mater. 324, 117–130 (2017)

    CAS  Google Scholar 

  46. D. Sun, Y. Zhang, Y. Liu, Z. Wang, X. Chen, Z. Meng, S. Kang, Y. Zheng, L. Cui, M. Chen, M. Dong, B. Hu, In-situ homodispersely immobilization of Ag@AgCl on chloridized g-C3N4 nanosheets as an ultrastable plasmonic photocatalyst. Chem. Eng. J. 384, 123259 (2020)

    CAS  Google Scholar 

  47. M. Xu, Y. Chen, W.Y. Hu, Y.T. Liu, Q.P. Zhang, H. Yuan, X.Y. Wang, J.X. Zhang, K.Y. Luo, J. Li, G. Xiong, Designed synthesis of microstructure and defect-controlled Cu-doped ZnO-Ag nanoparticles: exploring high-efficiency sunlight-driven photocatalysts. J. Phys. D-Appl. Phys. 53, 10 (2020)

    Google Scholar 

  48. A. El-Trass, H. ElShamy, I. El-Mehasseb, M. El-Kemary, CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 258, 2997–3001 (2012)

    CAS  Google Scholar 

  49. H. Azadi, H.D. Aghdam, R. Malekfar, S.M. Bellah, Effects of energy and hydrogen peroxide concentration on structural and optical properties of CuO nanosheets prepared by pulsed laser ablation. Results Phys. 15, 102610 (2019)

    Google Scholar 

  50. P. Nuengmatcha, P. Porrawatkul, S. Chanthai, P. Sricharoen, N. Limchoowong, Enhanced photocatalytic degradation of methylene blue using Fe2O3/graphene/CuO nanocomposites under visible light. J. Environ. Chem. Eng. 7, 103438 (2019)

    CAS  Google Scholar 

  51. A.K. Bhunia, S. Saha, CuO nanoparticle-protein bioconjugate: characterization of CuO nanoparticles for the study of the interaction and dynamic of energy transfer with bovine serum albumin. BioNanoScience (2019). https://doi.org/10.1007/s12668-019-00687-z

    Article  Google Scholar 

  52. X.X. Zhang, K. Hu, X.L. Zhang, W. Ali, Z.J. Li, Y. Qu, H. Wang, Q.Y. Zhang, L.Q. Jing, Surface co-modification with highly-dispersed Mn & Cu oxides of g-C3N4 nanosheets for efficiently photocatalytic reduction of CO2 to CO and CH4. Appl. Surf. Sci. 492, 125–134 (2019)

    CAS  Google Scholar 

  53. J. Wu, C. Li, X. Zhao, Q. Wu, X. Qi, X. Chen, T. Hu, Y. Cao, Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2. Appl. Catal. B 176–177, 559–569 (2015)

    Google Scholar 

  54. S. Iqbal, Z. Pan, K. Zhou, Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS2/CdS nanosheet-based van der Waals heterostructures. Nanoscale 9, 6638–6642 (2017)

    CAS  Google Scholar 

  55. M. Parvaz, M.B. Khan, A. Azam, Z.H. Khan, Synthesis, characterization, and photocatalytic properties of CuO-TiS2 nanocomposite. Mater. Res. Express 6, 125054 (2019)

    CAS  Google Scholar 

  56. S. Sharma, M.R. Pai, G. Kaur, V.R. Satsangi, S. Dass, R. Shrivastav, Efficient hydrogen generation on CuO core/AgTiO2 shell nano-hetero-structures by photocatalytic splitting of water. Renew. Energy 136, 1202–1216 (2019)

    CAS  Google Scholar 

  57. K.-G. Liu, F. Rouhani, X.-M. Gao, M. Abbasi-Azad, J.-Z. Li, X.-D. Hu, W. Wang, M.-L. Hu, A. Morsali, Bilateral photocatalytic mechanism of dye degradation by a designed ferrocene-functionalized cluster under natural sunlight. Catal. Sci. Technol. (2020). https://doi.org/10.1039/C9CY02003A

    Article  Google Scholar 

  58. Y. Meng, T. Dai, X. Zhou, G. Pan, S. Xia, Photodegradation of volatile organic compounds catalyzed by MCr-LDHs and hybrid MO@MCr-LDHs (M = Co, Ni, Cu, Zn): the comparison of activity, kinetics and photocatalytic mechanism. Catal. Sci. Technol. (2020). https://doi.org/10.1039/C9CY02098E

    Article  Google Scholar 

  59. Y. Li, X. Chen, L. Li, Facile thermal exfoliation of Cu sheets towards the CuO/Cu2O heterojunction: a cost-effective photocatalyst with visible-light response for promising sustainable applications. RSC Adv. 9, 33395–33402 (2019)

    CAS  Google Scholar 

  60. A.P. Khandhar, H. Liang, A.C. Simpson, S.G. Reed, D. Carter, C.B. Fox, M.T. Orr, Physicochemical structure of a polyacrylic acid stabilized nanoparticle alum (nanoalum) adjuvant governs TH1 differentiation of CD4+ T cells. Nanoscale (2020). https://doi.org/10.1039/C9NR09936K

    Article  Google Scholar 

  61. M. Shaban, A.M. Ahmed, N. Shehata, M.A. Betiha, A.M. Rabie, Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue. J. Colloid Interface Sci. 555, 31–41 (2019)

    CAS  Google Scholar 

  62. L. Vimala Devi, S. Sellaiyan, T. Selvalakshmi, H.J. Zhang, A. Uedono, K. Sivaji, S. Sankar, Synthesis, defect characterization and photocatalytic degradation efficiency of Tb doped CuO nanoparticles. Adv. Powder Technol. 28, 3026–3038 (2017)

    CAS  Google Scholar 

  63. S. Hariganesh, S. Vadivel, D. Maruthamani, M. Kumaravel, B. Paul, N. Balasubramanian, T. Vijayaraghavan, Facile large scale synthesis of CuCr2O4/CuO nanocomposite using MOF route for photocatalytic degradation of methylene blue and tetracycline under visible light. Appl. Organomet. Chem. 34, e5365 (2019)

    Google Scholar 

  64. A. Katzenberg, A. Raman, N.L. Schnabel, A.L. Quispe, A.I. Silverman, M.A. Modestino, Photocatalytic hydrogels for removal of organic contaminants from aqueous solution in continuous flow reactors. React. Chem. Eng. (2020). https://doi.org/10.1039/C9RE00456D

    Article  Google Scholar 

  65. X. You, C. Huang, W. Huang, G. Shi, J. Deng, T. Zhou, Ultra-small CoOx/GO catalyst supported on ITO glass obtained by electrochemical post-treatment of a redox-active infinite coordination polymer: a portable reactor for real-time monitoring of catalytic oxidative degradation of colored wastewater. Environ. Sci.: Nano (2020). https://doi.org/10.1039/C9EN01163C

    Article  Google Scholar 

  66. A. Qurratul, S. Khurshid, Z. Gul, J. Khatoon, M.R. Shah, I. Hamid, I.A.T. Khan, F. Aslam, Anionic azo dyes removal from water using amine-functionalized cobalt–iron oxide nanoparticles: a comparative time-dependent study and structural optimization towards the removal mechanism. RSC Adv. 10, 1021–1041 (2020)

    Google Scholar 

  67. S. Rani, G. Naresh, T.K. Mandal, Coupled-substituted double-layer Aurivillius niobates: structures, magnetism and solar photocatalysis. Dalton Trans. (2020). https://doi.org/10.1039/C9DT04339J

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support received for this research work from the Natural Science Foundation of Guangdong Province (No. 2018A030313859), the Major Project of Fundamental and Application Research of the Department of Education of Guangdong Province (No. 2017KZDXM079), the Natural Science Foundation of Huizhou University (Nos. 20180927172750326, HZU201714 and HZU201906), Department of Chemistry, University of Management & Technology, Lahore-54770, Pakistan, and Korean Research Fellowship Program through the National Research Foundation of Korea (NRF), Korea, funded by the Ministry of Science and ICT (Grant No. NRF-2019H1D3A1A01102931).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahid Iqbal, Ali Bahadur or Hao Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 606 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, S., Javed, M., Bahadur, A. et al. Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly(acrylic acid) microgel shell for efficient removal of methylene blue under visible light. J Mater Sci: Mater Electron 31, 8423–8435 (2020). https://doi.org/10.1007/s10854-020-03377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03377-9

Navigation