Skip to main content
Log in

Nanostructured apatites grown by laser floating zone

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Apatites (AP) ceramics are important due to their application in the orthopaedics field as bioceramic material. Several processes to produce apatites such as oxyapatite (OAP) and hydroxyapatite (HA) materials are used to apply as a temporary substitute for human bone. In the present work, AP powders were prepared by high-energy ball milling and then by laser floating zone (LFZ) technique to transform into a dense cylinder (fibre). The effect of LFZ processing conditions was assessed by structural and electric characterization. Fibres present strong densification and a uniform polycrystalline microstructure, which could favour the use for natural bone treatments and as bio-sensors. However, further work must be assessed to optimize laser processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.V. Dorozhkin, Amorphous calcium orthophosphates: nature, chemistry and biomedical applications. Int. J. Mater. Chem. 2, 19–46 (2012)

    Article  CAS  Google Scholar 

  2. C. Lavernia, J. Schoenung, Calcium phosphate ceramics as bone substitutes. Ceram. Bull. 70, 95–100 (1991)

    CAS  Google Scholar 

  3. V. Sergo, O. Sbaizero, D.R. Clarke, Mechanical and chemical consequences of the residual stresses in plasma sprayed hydroxyapatite coatings. Biomaterials 18, 477 (1997). https://doi.org/10.1016/S0142-9612(96)00147-0

    Article  CAS  Google Scholar 

  4. B.R. Constantz, I.C. Ison, M.T. Fulmer, Skeletal repair by in situ formation of the mineral phase of bone. Science 267, 1796 (1995). https://doi.org/10.1126/science.7892603

    Article  CAS  Google Scholar 

  5. D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170 (2004). https://doi.org/10.1002/adma.200400719

    Article  CAS  Google Scholar 

  6. T. Long, J. Yang, S.-S. Shi, Y.P. Guo, Q.F. Ke, Z.A. Zhu, Fabrication of three-dimensional porous scaffold based on collagen fibre and bioglass for bone tissue engineering. J. Biomed. Mater. Res. B 103, 1455–1464 (2014). https://doi.org/10.1002/jbm.b.33328

    Article  CAS  Google Scholar 

  7. S. Liu, H. Li, L. Zhang, Q. Guo, Pulsed electrodeposition of carbon nanotubes hydroxyapatite nanocomposites for carbon/carbon composites. Ceram. Int. 42, 15650–15657 (2016). https://doi.org/10.1016/j.ceramint.2016.07.020

    Article  CAS  Google Scholar 

  8. P.N. Lemougna, K.-T Wang, Q. Tang, U.C. Melo, X.-M. Cui, Recent developments on inorganic polymers synthesis and applications. Ceram. Int. 42, 15142–15159 (2016). https://doi.org/10.1016/j.ceramint.2016.07.027

    Article  CAS  Google Scholar 

  9. M.J. Yaszemsk, Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17, 175 (1996)

    Article  Google Scholar 

  10. H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, M.T. Lui, Hydroxyapatite synthesized by a simplified hydrothermal method. Ceram. Int. 23, 19 (1997). https://doi.org/10.1016/0272-8842(95)00135-2

    Article  Google Scholar 

  11. G.F. Fernandes, Calcium phosphate biomaterials from marine algae_hydrothermal synthesis and characterization. Quim. Nova 23, 441 (2000). https://doi.org/10.1590/S0100-40422000000400002

    Article  Google Scholar 

  12. G. Heimke, Advanced ceramics for biomedical applications. Angew. Chem. 28(1), 111 (1989). https://doi.org/10.1002/ange.19891010141

    Article  Google Scholar 

  13. L.L. Hench, Bioceramics: from concept to clinic. J. Amer. Ceram. Soc. 74, 1487 (1991)

    Article  CAS  Google Scholar 

  14. M.R. Bet, Compósitos Colágeno Aniônico: Fosfato de Cálcio Preparação e Caracterização. Quim. Nova 20, 475 (1997). https://doi.org/10.1590/S0100-40421997000500006

    Article  CAS  Google Scholar 

  15. D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7, 216–223 (1996)

    Article  CAS  Google Scholar 

  16. M.E. Fragalà, I. Cacciotti, Y. Aleeva, R.L. Nigro, A. Bianco, G. Malandrino, C. Spinella, G. Pezzotti, G. Gusmano, Core-shell Zn-doped TiO2–ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition. CrystEngComm 12, 3858–3865 (2010). https://doi.org/10.1039/c004157b

    Article  CAS  Google Scholar 

  17. C. Jiang, G. Zhang, Y. Wu, L. Li, K. Shi, Facile synthesis of SnO2 nanocrystalline tubes by electrospinning and their fast response and high sensitivity to NOx at room temperature. CrystEngComm 14, 2739–2747 (2012). https://doi.org/10.1039/C2CE06405G

    Article  CAS  Google Scholar 

  18. Y. Cheng, B. Zou, C. Wang, Y. Liu, X. Fan, Z. Ling, W. Ying, H. Ma, X. Cao, Formation mechanism of Fe2O3 hollow fibres by direct annealing of the electrospun composite fibres and their magnetic, electrochemical properties. CrystEngComm 13, 2863–2870 (2011). https://doi.org/10.1039/C0CE00379D

    Article  CAS  Google Scholar 

  19. Z. Yi, K. Wang, J. Tian, Y. Shu, J. Yang, W. Xiao, B. Lin, X. Liao, Hierarchical porous hydroxyapatite fibres with a hollow structure as drug delivery carriers. Ceram. Int. 42, 19079–19085 (2016). https://doi.org/10.1016/j.ceramint.2016.09.067

    Article  CAS  Google Scholar 

  20. N.M. Ferreira, A.R. Sarabando, S. Atanasova-Vladimirova, R. Kukeva, R. Stoyanova, F. Costa, B. Rangelov, Iron oxidation state effect on Mg-Al- Si-O glassy system. Ceram. Int. 45, 21379–21384 (2019). https://doi.org/10.1016/j.ceramint.2019.07.125

    Article  CAS  Google Scholar 

  21. N.M. Ferreira, A.V. Kovalevsky, J.C. Waerenborgh, M. Quevedo-Reyes, A.A. Timopheev, F.M. Costa, J.R. Frade, Crystallization of iron-containing Si-Al-Mg-O glasses under laser floating zone conditions. J. Alloys Compd. 611, 57–64 (2014). https://doi.org/10.1016/j.jallcom.2014.05.118

    Article  CAS  Google Scholar 

  22. L.V. Azároff, Elements of X-ray crystallography, Cbls\Ceramic Books & Literature, (1992), ISBN: 1878907115, 9781878907110.

  23. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98–100 (1918)

    Google Scholar 

  24. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  25. W. Georg, Powder Diffraction: The Rietveld Method and the Two-Stage Method (Springer, Berlin, 2006), p. 37. ISBN: 3-540-27986-7.

    Google Scholar 

  26. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charac. 85, 111 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  27. H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151 (1967). https://doi.org/10.1107/S0365110X67000234

    Article  CAS  Google Scholar 

  28. C.C. Silva, M.A. Valente, M.P.F. Graça, A.S.B. Sombra, The modulus formalism used in the dielectric analysis with optical characterization of hydroxyapatite and CaTi4P6O24 ceramic formers by dry ball milling. Mater. Sci. Forum 514–516, 1087–1093 (2006)

    Article  Google Scholar 

  29. F.G. Figueiras, D. Dutta, N.M. Ferreira, F.M. Costa, M.P.F. Graça, M.A. Valente, Multiferroic interfaces in bismuth ferrite composite fibres grown by laser floating zone technique. Mater. Des. 90, 829–833 (2016). https://doi.org/10.1016/j.matdes.2015.11.044

    Article  CAS  Google Scholar 

  30. M.S. AlHammad, Nanostructure hydroxyapatite based ceramics by sol gel method. J. Alloys Compd. 661, 251–256 (2016). https://doi.org/10.1016/j.jallcom.2015.11.045

    Article  CAS  Google Scholar 

  31. A. Das, D. Pamu, A comprehensive review on electrical properties of hydroxyapatite based ceramic composites. Mater. Sci. Eng. C 101, 539–563 (2019). https://doi.org/10.1016/j.msec.2019.03.077

    Article  CAS  Google Scholar 

  32. C.C. Silva, A.F.L. Almeida, R.S. De Oliveira, A.G. Pinheiro, J.C. Goes, A.S.B. Sombra, Dielectric permittivity and loss of hydroxyapatite screen-printed thick films. J. Mater. Sci. 38, 3713–3720 (2003). https://doi.org/10.1023/A:1025963728858

    Article  CAS  Google Scholar 

  33. C.C. Silva, M.P.F. Graça, A.S.B. Sombra, in Electrical, structural and in-vivo analysis of nanocrystalline hydroxyapatite powders and composites, Eletrical Measurements, Introductions, Concepts and Applications, (Nova Science Plubisher, New York, 2018), p. 323

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of i3N (UID/CTM/50025/2019), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. This work is funded by national funds (OE), through FCT – Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ferreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, N.M., Prezas, P. & Silva, C.C. Nanostructured apatites grown by laser floating zone. J Mater Sci: Mater Electron 31, 8329–8335 (2020). https://doi.org/10.1007/s10854-020-03368-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03368-w

Navigation