Skip to main content
Log in

Preparation of 3D flower-like Bi/CuS composite and properties of degrading dye wastewater

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

At present, the combination of plasmonic metals and semiconductor materials is an effective method to improve the photocatalytic activity. In this paper, Bi was successfully compounded on the surface of 3D flower-like CuS by a simple two-step hydrothermal method. The samples were characterized by XRD, SEM, TEM, BET, XPS, EIS and M-S. The photocatalytic performance of Bi/CuS composites was evaluated by photocatalytic degradation of methylene blue (MB) and methyl orange (MO) under light illumination. The experimental results indicated that the combination of Bi nanoparticles improved the photocatalytic activity to MB and MO of the composites, which were 45.81% and 55.63% than that of pure CuS. In addition, the reaction mechanism in the photocatalytic degradation process was clarified, and the photocatalytic activity enhancement was attributed to the effective separation of photogenerated carriers and the reduction of recombination of photogenerated electron-hole pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Sol. Energy Mater. Sol. Cells 77, 65–82 (2003)

    CAS  Google Scholar 

  2. P. Senthilkumar, D.A. Jency, T. Kavinkumar, D. Dhayanithi, S. Dhanuskodi, M. Umadevi, S. Manivannan, N.V. Giridharan, V. Thiagarajan, M. Sriramkumar, K. Jothivenkatachalam, ACS Sustain. Chem. Eng. 7, 12032–12043 (2019)

    CAS  Google Scholar 

  3. R. Jain, M. Mathur, S. Sikarwar, A. Mittal, J. Environ. Manag. 85, 956–964 (2007)

    CAS  Google Scholar 

  4. K. Kadirvelu, C. Namasivayam, Adv. Environ. Res. 7, 471–478 (2003)

    CAS  Google Scholar 

  5. Y. Li, S. Guan, Y. Liu, G. Xu, B. Cai, Opt. Express 26, 33856–33864 (2018)

    CAS  Google Scholar 

  6. L.W. Huang, P.L. Qiu, J.Y. Chen, A.G. Chen, Y.X. Liu, Environ. Technol. (2018). https://doi.org/10.1080/09593330.2018.1556349

    Article  Google Scholar 

  7. M. Vilaseca, M.C. Gutierrez, V. Lopez-Grimau, M. Lopez-Mesas, M. Crespi, Water Environ. Res. 82, 176–182 (2010)

    CAS  Google Scholar 

  8. A. Fujishima, K. Honda, Nature 238, 37–38 (1972)

    CAS  Google Scholar 

  9. Z.A.M. Hir, A.H. Abdullah, Z. Zainal, H.N. Lim, J. Mater. Sci. 53, 13264–13279 (2018)

    Google Scholar 

  10. J. Segalin, C. Sirtori, L. Jank, M.F.S. Lima, P.R. Livotto, T.C. Machado, M.A. Lansarin, T.M. Pizzolato, J. Hazard. Mater. 299, 78–85 (2015)

    CAS  Google Scholar 

  11. S.K. Evstropiev, L.L. Lesnykh, N.V. Nikonorov, A.V. Karavaeva, E.V. Kolobkova, K.V. Oreshkina, L.Y. Mironov, I.V. Bagrov, Opt. Spectrosc. 126, 431–438 (2019)

    CAS  Google Scholar 

  12. W. Zhen, X. Ning, B. Yang, Y. Wu, Z. Li, G. Lu, Appl. Catal. B 221, 243–257 (2018)

    CAS  Google Scholar 

  13. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, J. Am. Chem. Soc. 130, 7176–7177 (2008)

    CAS  Google Scholar 

  14. J. Zhang, J. Yu, Y. Zhang, Q. Li, J.R. Gong, Nano Lett. 11, 4774–4779 (2011)

    CAS  Google Scholar 

  15. X. Pan, M.Q. Yang, X. Fu, N. Zhang, Y.J. Xu, Nanoscale 5, 3601–3614 (2013)

    CAS  Google Scholar 

  16. N. Sreelekha, K. Subramanyam, D.A. Reddy, G. Murali, S. Ramu, K.R. Varma, R.P. Vijayalakshmi, Appl. Surf. Sci. 378, 330–340 (2016)

    CAS  Google Scholar 

  17. S. Iqbal, A. Bahadur, A. Saeed, K. Zhou, M. Shoaib, M. Waqas, J. Colloid Interface Sci. 502, 16–23 (2017)

    CAS  Google Scholar 

  18. X. Qian, H. Liu, N. Chen, H. Zhou, L. Sun, Y. Li, Y. Li, Inorg. Chem. 51, 6771–6775 (2012)

    CAS  Google Scholar 

  19. T.Y. Ding, M.S. Wang, S.-P. Guo, G.C. Guo, J.S. Huang, Mater. Lett. 62, 4529–4531 (2008)

    CAS  Google Scholar 

  20. A.A. Dubale, A.G. Tamirat, H.-M. Chen, T.A. Berhe, C.J. Pan, W.N. Su, B.J. Hwang, J. Mater. Chem. A 4, 2205–2216 (2016)

    CAS  Google Scholar 

  21. J. Ma, C. Zhou, J. Long, Z. Ding, R. Yuan, C. Xu, RSC Adv. 8, 14056–14063 (2018)

    CAS  Google Scholar 

  22. B. Pan, S. Luo, W. Su, X. Wang, Appl. Catal. B 168, 458–464 (2015)

    Google Scholar 

  23. R. Su, N. Dimitratos, J. Liu, E. Carter, S. Althahban, X. Wang, Y. Shen, S. Wendt, X. Wen, J.W. Niemantsverdriet, B.B. Iversen, C.J. Kiely, G.J. Hutchings, F. Besenbacher, ACS Catal. 6, 4239–4247 (2016)

    CAS  Google Scholar 

  24. Y. Li, S. Cao, A. Zhang, C. Zhang, T. Qu, Y. Zhao, A. Chen, Appl. Surf. Sci. 445, 350–358 (2018)

    CAS  Google Scholar 

  25. Q. Xia, Nano 14, 141–150 (2019)

    Google Scholar 

  26. D.J. Darensbourg, R.M. Mackiewicz, J.L. Rodgers, J. Am. Chem. Soc. 127, 14026–14038 (2005)

    CAS  Google Scholar 

  27. R. Ullah, H. Sun, H.M. Ang, M.O. Tade, S. Wang, Sep. Purif. Technol. 89, 98–106 (2012)

    CAS  Google Scholar 

  28. Y. Zhou, S. Ren, Q. Dong, Y. Li, H. Ding, Rsc Adv. 6, 102875–102885 (2016)

    CAS  Google Scholar 

  29. M. Lan, B. Zhang, H. Cheng, X. Li, Q. Wu, Z. Ying, Y. Zhu, Y. Li, X. Meng, F. Zhao, Mol. Catal. 432, 23–30 (2017)

    CAS  Google Scholar 

  30. V.L. Chandraboss, J. Kamalakkannan, S. Prabha, S. Senthilvelan, Rsc Adv. 5, 25857–25869 (2015)

    CAS  Google Scholar 

  31. S. Weng, B. Chen, L. Xie, Z. Zheng, P. Liu, J. Mater. Chem. A 1, 3068–3075 (2013)

    CAS  Google Scholar 

  32. H.A. Mohamed, A.S. Mohamed, H.M. Ali, Mater. Res. Express 5, 056411 (2018)

    Google Scholar 

  33. M. Gao, D. Zhang, X. Pu, H. Li, D. Lv, B. Zhang, X. Shao, Sep. Purif. Technol. 154, 211–216 (2015)

    CAS  Google Scholar 

  34. J. Xiao, W. Yang, Q. Li, Appl. Catal. B 218, 111–118 (2017)

    CAS  Google Scholar 

  35. S. Yu, Y. Qian, L. Shu, Y. Xie, L. Yang, C. Wang, Mater. Lett. 35, 116–119 (1998)

    CAS  Google Scholar 

  36. J.J. Zhu, n Koltypin, Chem. Mater 12, 73 (2000)

    CAS  Google Scholar 

  37. W. Xiao, W. Zhou, T. Feng, Y. Zhang, H. Liu, H. Yu, L. Tian, Y. Pu, J. Mater. Sci. 28, 5931–5940 (2017)

    CAS  Google Scholar 

  38. B.M. Palve, S.R. Jadkar, H.M. Pathan, J. Mater. Sci. 27, 11783–11789 (2016)

    CAS  Google Scholar 

  39. J. Sheng, X. Li, Y. Xu, ACS Catal. 4, 732–737 (2014)

    CAS  Google Scholar 

  40. F. Dong, Z. Zhao, Y. Sun, Y. Zhang, S. Yan, Z. Wu, Environ. Sci. Technol. 49, 12432–12440 (2015)

    CAS  Google Scholar 

  41. M.R. Yang, Y. Shen, X.S. Hu, H.F. Zhang, L.M. Wang, L.H. Xu, Y.J. Xing, Chin. J. Inorg. Chem. 33, 1223–1230 (2017)

    CAS  Google Scholar 

  42. X.S. Hu, Y. Shen, Y.T. Zhang, J.J. Nie, J. Phys. Chem. Solids 103, 201–208 (2017)

    CAS  Google Scholar 

  43. U. Shamraiz, A. Badshah, R.A. Hussain, M.A. Nadeem, S. Saba, J. Saudi Chem. Soc. 21, 390–398 (2017)

    CAS  Google Scholar 

  44. Z. Lian, W. Wang, S. Xiao, X. Li, Y. Cui, D. Zhang, G. Li, H. Li, Sci. Rep. 5, 10461 (2015)

    CAS  Google Scholar 

  45. K. Mori, P. Verma, R. Hayashi, K. Fuku, H. Yamashita, Chen-Eur. J.21, 11885–11893 (2015)

    CAS  Google Scholar 

  46. Y. Huang, H. Xu, D. Luo, Y. Zhao, Y. Fang, Y. Wei, L. Fan, J. Wu, Solid State Sci. 89, 74–84 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21671026) and Hunan Collaborative Innovation Center of Environmental and Energy Photocatalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zhou, Y., Wu, W. et al. Preparation of 3D flower-like Bi/CuS composite and properties of degrading dye wastewater. J Mater Sci: Mater Electron 31, 3845–3854 (2020). https://doi.org/10.1007/s10854-020-02919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02919-5

Navigation