Skip to main content
Log in

Ternary heterostructural BiOBr0.5I0.5/BiOBr/BiOI engineering for efficient photocatalytic NO removal via synergistic effects of enhanced carrier and exciton photocatalysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Improvements to the degradation of NO by photocatalysts requires enhanced oxidation activity. In this work, the heterostructural photocatalyst BiOBr0.5I0.5/BiOBr/BiOI was prepared and showed enhanced photocatalytic efficiency for the removal of NO. We examined the photocatalytic removal of NO and confirmed that the improved efficiency of NO removal in our systems was due to the synergic effect of enhanced carrier and exciton photocatalysis. The superoxide and singlet oxygen generated from these two processes lead to the highly efficient removal of NO. Meanwhile, the photocatalytic NO removal mechanism of BiOBr0.5I0.5/BiOBr/BiOI was explored by in-situ FT-IR. This investigation provides a new approach to the design of efficient photocatalysts and an increased understanding of the NO removal mechanism through photocatalytic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. C. Meng, Y. Liu, NOx removal from vehicle emissions by functionality surface of asphalt road. J. Hazard. Mater. 174, 375–379 (2010)

    Google Scholar 

  2. Z. Ai, L. Zhu, S. Lee, L. Zhang, NO treated TiO2 as an efficient visible light photocatalyst for NO removal. J. Hazard. Mater. 192, 361–367 (2011)

    CAS  Google Scholar 

  3. S. Matsuda, H. Hatano, A. Tsutsumi, Ultrafine particle fluidization and its application to photocatalytic NOx treatment. Chem. Eng. J. 82, 183–188 (2001)

    CAS  Google Scholar 

  4. T. Sano, S. Tsutsui, K. Koike, T. Hirakawa, Y. Teramoto, N. Negishi, K. Takeuchi, Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. J. Mater. Chem A 1, 6489–6496 (2013)

    CAS  Google Scholar 

  5. A. Mitsionis, T. Vaimakis, C. Trapalis, Hydroxyapatite/titanium dioxide nanocomposites for controlled photocatalytic NO oxidation. Appl. Catal. B 106, 398–404 (2011)

    CAS  Google Scholar 

  6. T. Mano, S. Nishimoto, Y. Kameshima, M. Miyake, Water treatment efficacy of various metal oxide semiconductors for photocatalytic ozonation under UV and visible light irradiation. Chem. Eng. J. 264, 221–229 (2015)

    CAS  Google Scholar 

  7. A. Trapalis, N. Todorova, T. Giannakopoulou, N. Boukos, T. Speliotis, D. Dimotikali, J. Yu, TiO2/graphene composite photocatalysts for NOx removal: a comparison of surfactant-stabilized graphene and reduced graphene oxide. Appl. Catal. B 180, 637–647 (2016)

    CAS  Google Scholar 

  8. C. Wang, X. Zhang, X. Song, W. Wang, H. Yu, Novel Bi12O15Cl6 photocatalyst for the degradation of bisphenol A under visible-light irradiation. ACS Appl. Mater. Interfaces 8, 5320–5326 (2016)

    Google Scholar 

  9. A. Henríquez, H.D. Mansilla, J. Freer, D. Contreras, Selective oxofunctionalization of cyclohexane over titanium dioxide–based and bismuth oxyhalide (BiOX, X = Cl, Br, I) photocatalysts by visible light irradiation. Appl. Catal. B 206, 252–262 (2017)

    Google Scholar 

  10. Y. Bai, T. Chen, P. Wang, L. Wang, L. Ye, Bismuth-rich Bi4O5X2 (X = Br, and I) nanosheets with dominant 101 facets exposure for photocatalytic H2 evolution. Chem. Eng. J. 304, 454–460 (2016)

    CAS  Google Scholar 

  11. Y. Bai, L. Ye, L. Wang, X. Shi, P. Wang, W. Bai, P.K. Wong, g-C3N4/Bi4O5I2 heterojunction with I3−/I−- redox mediator for enhanced photocatalytic CO2 conversion. Appl. Catal. B 194, 98–104 (2016)

    CAS  Google Scholar 

  12. Y. Bai, P. Yang, P. Wang, H. Xie, L. Ye, Solid phase fabrication of bismuth-rich Bi3O4ClxBr1−x solid solution for enhanced photocatalytic NO removal under visible light. J. Taiwan Inst. Chem. E 82, 273–280 (2018)

    CAS  Google Scholar 

  13. H. Liu, Y. Su, Z. Chen, Z. Jin, Y. Wang, Graphene sheets grafted three-dimensional BiOBr0.2I0.8 microspheres with excellent photocatalytic activity under visible light. J. Hazard. Mater. 266, 75–83 (2014)

    CAS  Google Scholar 

  14. W. Qiao, Z. Liu, D. Liu, G. Liu, Y. Min, F. Cui, W. Wei, Ultrathin two-dimensional BiOBrxI1−x solid solution with rich oxygen vacancies for enhanced visible-light-driven photoactivity in environmental remediation. Appl. Catal. B 236, 222–232 (2018)

    Google Scholar 

  15. J. Cao, B. Xu, B. Luo, H. Lin, S. Chen, Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties. Catal. Commun. 13, 63–68 (2011)

    CAS  Google Scholar 

  16. H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 7, 482–492 (2015)

    CAS  Google Scholar 

  17. Y. Bai, X. Shi, P. Wang, H. Xie, L. Ye, Photocatalytic mechanism regulation of bismuth oxyhalogen via changing atomic assembly method. ACS Appl. Mater. Interfaces 9, 30273–30277 (2017)

    CAS  Google Scholar 

  18. Y. Bai, X. Shi, P. Wang, L. Wang, K. Zhang, Y. Zhou, H. Xie, J. Wang, L. Ye, BiOBrxI1−x/BiOBr heterostructure engineering for efficient molecular oxygen activation. Chem. Eng. J. 356, 34–42 (2019)

    CAS  Google Scholar 

  19. Z. Wang, Y. Huang, W. Ho, J. Cao, Z. Shen, S.C. Lee, Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: in-situ self-sacrificial synthesis, characterizations and mechanistic study. Appl. Catal. B 199, 123–133 (2016)

    CAS  Google Scholar 

  20. J. Luo, G. Dong, Y. Zhu, Y. Zhong, C. Wang, Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4. Appl. Catal. B 214, 46–56 (2017)

    CAS  Google Scholar 

  21. Y. Hong, C. Li, G. Zhang, Y. Meng, B. Yin, Y. Zhao, W. Shi, Efficient and stable Nb2O5 modified g-C3N4 photocatalyst for removal of antibiotic pollutant. Chem. Eng. J. 299, 74–84 (2016)

    CAS  Google Scholar 

  22. M. Shang, W. Wang, L. Zhang, Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. J. Hazard. Mater. 167, 803–809 (2009)

    CAS  Google Scholar 

  23. L. Ye, W. Hui, X. Jin, Y. Su, D. Wang, H. Xie, X. Liu, X. Liu, Synthesis of olive-green few-layered BiOI for efficient photoreduction of CO2 into solar fuels under visible/near-infrared light. Sol. Energy Mater. Sol. C 144, 732–739 (2016)

    CAS  Google Scholar 

  24. C. Jing, B. Xu, H. Lin, B. Luo, S. Chen, Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal. Chem. Eng. J. 185–186, 91–99 (2012)

    Google Scholar 

  25. Y. Lei, G. Wang, P. Guo, H. Song, The Ag-BiOBrxI1−x composite photocatalyst: preparation, characterization and their novel pollutants removal property. Appl. Surf. Sci. 279, 374–379 (2013)

    CAS  Google Scholar 

  26. Z. Jia, F. Wang, F. Xin, B. Zhang, Simple solvothermal routes to synthesize 3D BiOBrxI1−x microspheres and their visible-light-induced photocatalytic properties. Ind. Eng. Chem. Res. 50, 6688–6694 (2011)

    CAS  Google Scholar 

  27. S. Gao, C. Guo, S. Hou, L. Wan, Q. Wang, J. Lv, Y. Zhang, J. Gao, W. Meng, J. Xu, Photocatalytic removal of tetrabromobisphenol A by magnetically separable flower-like BiOBr/BiOI/Fe3O4 hybrid nanocomposites under visible-light irradiation. J. Hazard. Mater. 331, 1–12 (2017)

    CAS  Google Scholar 

  28. L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, The 001 facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 47, 6951–6953 (2011)

    CAS  Google Scholar 

  29. K. Zhang, C. Liu, F. Huang, C. Zheng, W. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B 68, 125–129 (2006)

    CAS  Google Scholar 

  30. W. Fan, H. Li, F. Zhao, X. Xiao, Y. Huang, H. Ji, Y. Tong, Boosting the photocatalytic performance of (001) BiOI: enhancing donor density and separation efficiency of photogenerated electrons and holes. Chem. Commun. 52, 5316–5319 (2016)

    CAS  Google Scholar 

  31. L. Ye, J. Liu, J. Zhuo, T. Peng, Z. Ling, Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl. Catal. B Environ. 142–143, 1–7 (2013)

    Google Scholar 

  32. G. Dong, W. Ho, L. Zhang, Photocatalytic NO removal on BiOI surface: the change from nonselective oxidation to selective oxidation. Appl. Catal. B 168–169, 490–496 (2015)

    Google Scholar 

  33. Y. Gao, Y. Huang, Y. Li, Q. Zhang, J. Cao, W.K. Ho, S.C. Lee, Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal under visible light. ACS Sustain. Chem. Eng. 4, 6912–6920 (2016)

    CAS  Google Scholar 

  34. Y. Nosaka, A. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 17, 11302–11336 (2017)

    Google Scholar 

  35. J. Ahern, R. Fairchild, S. Jin, J. Carr, H. Patterson, Characterization of BiOX compounds as photocatalysts for the degradation of pharmaceuticals in water. Appl. Catal. B 179, 229–238 (2015)

    CAS  Google Scholar 

  36. M. Gondal, X. Chang, M. Ali, Z. Yamani, Q. Zhou, G. Ji, Adsorption and degradation performance of Rhodamine B over BiOBr under monochromatic 532 nm pulsed laser exposure. Appl. Catal. A 397, 192–200 (2011)

    CAS  Google Scholar 

  37. Z. Wei, Y. Liu, J. Wang, R. Zong, W. Yao, J. Wang, Y. Zhu, Controlled synthesis of highly dispersed BiPO4 photocatalyst with surface oxygen vacancies. Nanoscale 7, 13943–13950 (2015)

    CAS  Google Scholar 

  38. H. Li, J. Li, Z. Ai, F. Jia, L. Zhang, Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity selectivity and perspective. Angew. Chem. Int. Ed. 57, 122–138 (2017)

    Google Scholar 

  39. H. Wang, S. Chen, D. Yong, X. Zhang, S. Li, W. Shao, X. Sun, B. Pan, Y. Xie, Giant electron-hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc. 139, 4737–4742 (2017)

    CAS  Google Scholar 

  40. J. Park, D. Feng, S. Yuan, H. Zhou, Photochromic metal-organic frameworks: reversible control of singlet oxygen generation. Angew. Chem. Int. Ed. 54, 430–435 (2015)

    CAS  Google Scholar 

  41. G. Zhang, G. Li, Z. Lan, L. Lin, A. Savateev, T. Heil, S. Zafeiratos, X. Wang, M. Antonietti, Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity. Angew. Chem. Int. Ed. 43, 13445–13449 (2017)

    Google Scholar 

  42. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, A simple sonochemical synthesis and characterization of CdWO4 nanoparticles and its photocatalytic application. J. Mater. Sci.: Mater. Electron. 27, 3240–3244 (2016)

    CAS  Google Scholar 

  43. K. Hadjiivanov, Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal. Rev. 42, 71–144 (2000)

    CAS  Google Scholar 

  44. K. Hadjiivanov, J. Saussey, J.L. Freysz, J. Lavalley, FT-IR study of NO + O2 co-adsorption on H-ZSM-5: re-assignment of the 2133 cm−1 band to NO+ species. Catal. Lett. 52, 103–108 (1998)

    CAS  Google Scholar 

  45. G. Dong, W. Ho, Y. Li, L. Zhang, Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal. Appl. Catal. B 174–175, 477–485 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872147, 51502146, 21671113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingquan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10854_2019_2272_MOESM1_ESM.docx

Characterizations, XPS patterns, TMB and NBT adsorption spectra, photocatalytic mechanisms of BiOBr0.5I0.5 and BiOBr/BiOI were described in the supplementary information. (DOCX 655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Wang, P., Wu, Y. et al. Ternary heterostructural BiOBr0.5I0.5/BiOBr/BiOI engineering for efficient photocatalytic NO removal via synergistic effects of enhanced carrier and exciton photocatalysis. J Mater Sci: Mater Electron 30, 19154–19163 (2019). https://doi.org/10.1007/s10854-019-02272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02272-2

Navigation