Skip to main content

Advertisement

Log in

2D/3D interface engineering: direct Z-scheme g-C3N4/YMnO3 heterojunction for reinforced visible-light photocatalytic oxidation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4) is a two-dimensional (2D) photocatalyst, but it appears a mediocre catalytic property due to the recombination of charge carriers. Constructing heterojunctions can boost the separation and suppress the recombination of photo-generated electron–hole pairs. For the conventional Type-II heterojunction, the oxidation ability is significantly reduced due to the decreasing of band gap. We try to maintain its oxidation capacity and promote the artificial bandgap by tailoring a Z-scheme heterojunction through interface engineering. Herein, we grafted different proportions of YMnO3 3D-nanoparticles onto g-C3N4 2D-nanosheets. This special 2D/3D mixed-dimensional nanocomposite exhibits efficient charge carrier transport performance according to the electrochemistry and photocurrent measurement. The outstanding photocatalytic oxidation ability can be verified by the rate of Rhodamine B degradation, which is 3.8 and 2.3 times of YMnO3 and g-C3N4, respectively. Theoretical calculation, active group capture experiments and electron spin resonance indicate the energy band position and the reactive groups (superoxide radicals and holes). The optimized g-C3N4/YMnO3 heterojunction utilizes the interfacial synergistic effect to achieve a composition of vigorous oxidizing ability and outstanding visible light harvesting. This work will pave a promising access for mechanism and interface engineering of other g-C3N4-based Z-scheme heterojunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Kumar, R. Boukherroub, K. Shankar, J. Mater. Chem. A. 6(27), 12876–12931 (2018)

    CAS  Google Scholar 

  2. J. Yuan, X. Liu, Y. Liu, C. Liu, Y. Tang, Y. Zeng, L. Wang, S. Zhang, T. Cai, S. Luo, Y. Pei, Appl. Catal. B 237, 24–31 (2018)

    CAS  Google Scholar 

  3. D. Zeng, P. Wu, W.-J. Ong, B. Tang, M. Wu, H. Zheng, Y. Chen, D.-L. Peng, Appl. Catal. B 233, 26–34 (2018)

    CAS  Google Scholar 

  4. J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8(3), 1701503 (2018)

    Google Scholar 

  5. S. Zeng, P. Kar, U.K. Thakur, K. Shankar, Nanotechnology 29(5), 52001–052001 (2018)

    Google Scholar 

  6. K. Kamata, Bull. Chem. Soc. Jpn 92(1), 133–151 (2019)

    CAS  Google Scholar 

  7. Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, Z. Zhao, Appl. Catal. B 230, 260–268 (2018)

    CAS  Google Scholar 

  8. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Nanoscale 5(18), 8326–8339 (2013)

    CAS  Google Scholar 

  9. W. Yu, D. Xu, T. Peng, J. Mater. Chem. A 3(39), 19936–19947 (2015)

    CAS  Google Scholar 

  10. J. Wang, H. Shu, T. Zhao, P. Liang, N. Wang, D. Cao, X. Chen, Phys. Chem. Chem. Phys. 20(27), 18571–18578 (2018)

    CAS  Google Scholar 

  11. Y. Cho, S. Kim, B. Park, C.-L. Lee, J.K. Kim, K.-S. Lee, I.Y. Choi, J.K. Kim, K. Zhang, S.H. Oh, J.H. Park, Nano Lett. 18(7), 4257–4262 (2018)

    CAS  Google Scholar 

  12. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116(12), 7159–7329 (2016)

    CAS  Google Scholar 

  13. D. Xu, B. Cheng, W. Wang, C. Jiang, J. Yu, Appl. Catal. B 231, 368–380 (2018)

    CAS  Google Scholar 

  14. B. Li, C. Lai, G. Zeng, L. Qin, H. Yi, D. Huang, C. Zhou, X. Liu, M. Cheng, P. Xu, C. Zhang, F. Huang, S. Liu, ACS Appl. Mater. Interfaces 10(22), 18824–18836 (2018)

    CAS  Google Scholar 

  15. T. Di, B. Zhu, B. Cheng, J. Yu, J. Xu, J. Catal. 352, 532–541 (2017)

    CAS  Google Scholar 

  16. J. Liu, B. Cheng, J. Yu, Phys. Chem. Chem. Phys. 18(45), 31175–31183 (2016)

    CAS  Google Scholar 

  17. S. Mukherjee, S. Ganguly, K. Manna, S. Mondal, S. Mahapatra, D. Das, Inorg. Chem. 57(7), 4050 (2018)

    CAS  Google Scholar 

  18. S. Chen, Y. Hu, S. Meng, X. Fu, Appl. Catal. B 150, 564–573 (2014)

    Google Scholar 

  19. S. Imada, T. Kuraoka, E. Tokumitsu, H. Ishiwara, Jpn. J. Appl. Phys. 40(2R), 666–671 (2001)

    CAS  Google Scholar 

  20. T. Li, L. Zhao, Y. He, J. Cai, M. Luo, J. Lin, Appl. Catal. B 129, 255–263 (2013)

    CAS  Google Scholar 

  21. H. She, H. Zhou, L. Li, Z. Zhao, M. Jiang, J. Huang, L. Wang, Q. Wang, ACS Sustain. Chem. Eng. 7(1), 650–659 (2019)

    CAS  Google Scholar 

  22. J. Wang, L. Tang, G. Zeng, Y. Liu, Y. Zhou, Y. Deng, J. Wang, B. Peng, ACS Sustain. Chem. Eng. 5(1), 1062–1072 (2017)

    CAS  Google Scholar 

  23. Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, Adv. Mater. 30(10), 1706108 (2018)

    Google Scholar 

  24. Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, F. Cui, Appl. Catal. B 220, 290–302 (2018)

    CAS  Google Scholar 

  25. Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Solar RrL. 2(3), 1800006 (2018)

    Google Scholar 

  26. H. She, Y. Wang, H. Zhou, Y. Li, L. Wang, J. Huang, Q. Wang, ChemCatChem. 11(2), 753–759 (2019)

    CAS  Google Scholar 

  27. A.S. Patra, G. Gogoi, R.K. Sahu, M. Qureshi, Phys. Chem. Chem. Phys. 19(19), 12167–12174 (2017)

    CAS  Google Scholar 

  28. M. Jiang, Y. Shi, J. Huang, L. Wang, H. She, J. Tong, B. Su, Q. Wang, Eur. J. Inorg. Chem. 2018(17), 1834–1841 (2018)

    CAS  Google Scholar 

  29. Q. Wang, Y. Shi, Z. Du, J. He, J. Zhong, L. Zhao, H. She, G. Liu, B. Su, Eur. J. Inorg. Chem. 2015(24), 4108–4115 (2015)

    CAS  Google Scholar 

  30. S.-S. Yi, J.-M. Yan, B.-R. Wulan, S.-J. Li, K.-H. Liu, Q. Jiang, Appl. Catal. B 200, 477–483 (2017)

    CAS  Google Scholar 

  31. S. Acharya, S. Mansingh, K.M. Parida, Inorg. Chem. Front. 4(6), 1022–1032 (2017)

    CAS  Google Scholar 

  32. B. Luo, M. Chen, Z. Zhang, J. Xu, D. Li, D. Xu, W. Shi, Dalton T. 46(26), 8431–8438 (2017)

    CAS  Google Scholar 

  33. X. Zhang, Y. Yang, W. Huang, Y. Yang, Y. Wang, C. He, N. Liu, M. Wu, L. Tang, Mater. Res. Bull. 99, 349–358 (2018)

    CAS  Google Scholar 

  34. J. Luo, X. Zhou, X. Ning, L. Zhan, J. Chen, Z. Li, Sep. Purif. Technol. 201, 327–335 (2018)

    CAS  Google Scholar 

  35. Q. Wang, Y. Shi, L. Pu, Y. Ta, J. He, S. Zhang, J. Zhong, J. Li, B. Su, Appl. Surf. Sci. 367, 109–117 (2016)

    CAS  Google Scholar 

  36. J. Chu, X. Han, Z. Yu, Y. Du, B. Song, P. Xu, ACS Appl. Mater. Interfaces 10(24), 20404–20411 (2018)

    CAS  Google Scholar 

  37. S. Tonda, S. Kumar, M. Bhardwaj, P. Yadav, S. Ogale, ACS Appl. Mater. Interfaces 10(3), 2667–2678 (2018)

    CAS  Google Scholar 

  38. A.T. Kozakov, A.G. Kochur, A.V. Nikolsky, K.A. Googlev, V.G. Smotrakov, V.V. Eremkin, J Electron Spectros Relat Phenomena. 184, 508–516 (2011)

    CAS  Google Scholar 

  39. A.G. Kochur, A.T. Kozakov, K.A. Googlev, A.V. Nikolskii, J Electron Spectros Relat Phenomena. 195, 1–7 (2014)

    CAS  Google Scholar 

  40. Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, ACS Appl. Mater. Interfaces. 2(10), 2915–2923 (2010)

    CAS  Google Scholar 

  41. L. Ge, C. Han, X. Xiao, L. Guo, Int. J. Hydrogen Energy 38(17), 6960–6969 (2013)

    CAS  Google Scholar 

  42. S. Zhuo, M. Shao, S.T. Lee, ACS Nano 6(2), 1059–1064 (2012)

    CAS  Google Scholar 

  43. L. Zhang, W. Yu, C. Han, J. Guo, Q.H. Zhang, H.Y. Xie, Q. Shao, Z.G. Sun, Z.H. Guo, J. Electrochem. Soc. 164(9), H651–H656 (2017)

    CAS  Google Scholar 

  44. X. Jiao, Z. Chen, X. Li, Y. Sun, S. Gao, W. Yan, C. Wang, Q. Zhang, Y. Lin, Y. Luo, Y. Xie, J. Am. Chem. Soc. 139(22), 7586–7594 (2017)

    CAS  Google Scholar 

  45. L. Liao, J. Zhu, X. Bian, L. Zhu, M.D. Scanlon, H.H. Girault, B. Liu, Adv. Funct. Mater. 23(42), 5326–5333 (2013)

    CAS  Google Scholar 

  46. L. Qian, L. Gu, L. Yang, H. Yuan, D. Xiao, Nanoscale 5(16), 7388–7396 (2013)

    CAS  Google Scholar 

  47. J. Wang, Y. Wang, W. Yang, X. Chen, Y. Zhu, Appl. Catal. B 220, 337–347 (2018)

    CAS  Google Scholar 

  48. L.Q. Ye, C.Q. Han, Z.Y. Ma, Y.M. Leng, J. Li, X.X. Ji, D.Q. Bi, H.Q. Xie, Z.X. Huang, Chem. Eng. J. 307, 311–318 (2017)

    CAS  Google Scholar 

  49. H. Zhao, P. Jiang, W. Cai, Chem. Asian J. 12(3), 361–365 (2017)

    CAS  Google Scholar 

  50. H. Yu, B. Huang, H. Wang, X. Yuan, L. Jiang, Z. Wu, J. Zhang, G. Zeng, J. Colloid Interface Sci. 522, 82–94 (2018)

    CAS  Google Scholar 

  51. A. Fujishima, X. Zhang, D. Tryk, Surf. Sci. Rep. 63(12), 515–582 (2008)

    CAS  Google Scholar 

  52. S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25(17), 10397–10401 (2009)

    CAS  Google Scholar 

  53. J.H. Pasch, J.H. Elbe, J. Food Sci. 44(1), 72–75 (1979)

    CAS  Google Scholar 

  54. C.-C. Pan, J.C.S. Wu, Mater. Chem. Phys. 100(1), 102–107 (2006)

    CAS  Google Scholar 

  55. X.J. Chen, Y.Z. Dai, X.Y. Wang, G. Jing, T.H. Liu, F.F. Li, J. Hazard. Mater. 292, 9–18 (2015)

    CAS  Google Scholar 

  56. Y. Gong, X. Zhao, J. Zhang, H. Zhang, B. Yang, K. Xiao, T. Guo, H. Shao, Y. Wang, G. Yu, Appl. Catal. B 233, 35–45 (2018)

    CAS  Google Scholar 

  57. Y.-F. Zhang, L.-G. Qiu, Y.-P. Yuan, Y.-J. Zhu, X. Jiang, J.-D. Xiao, Appl. Catal. B 144, 863–869 (2014)

    CAS  Google Scholar 

  58. Z. Xie, Y. Feng, F. Wang, D. Chen, Q. Zhang, Y. Zeng, W. Lv, G. Liu, Appl. Catal. B 229, 96–104 (2018)

    CAS  Google Scholar 

  59. N.I.M. Rosli, S.M. Lam, J.C. Sin, I. Satoshi, A.R. Mohamed, J. Environ. Eng. 144(2), 04017091 (2018)

    Google Scholar 

  60. W.-D. Oh, V.W.C. Chang, Z.-T. Hu, R. Goei, T.-T. Lim, Chem. Eng. J. 323, 260–269 (2017)

    CAS  Google Scholar 

  61. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95(1), 69–96 (1995)

    CAS  Google Scholar 

  62. I. Tateishi, H. Katsumata, T. Suzuki, S. Kaneco, Mater. Lett. 201, 66–69 (2017)

    CAS  Google Scholar 

  63. S.F. Wang, H. Yang, T. Xian, X.Q. Liu, Catal. Commun. 12(7), 625–628 (2011)

    Google Scholar 

  64. J. Luo, X. Zhou, L. Ma, X. Xu, Appl. Surf. Sci. 390, 357–367 (2016)

    CAS  Google Scholar 

  65. R.G. Pearson, Inorg. Chem. 27(4), 734–740 (1988)

    CAS  Google Scholar 

  66. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, ACS Nano 4(11), 6425–6432 (2010)

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundations of China (No. 11574138, 11874200 and 21427801), the Top-Notch Young Talents Program of China, the National Key R&D Program of China (2016YFA0201104) and Dengfeng Project B of Nanjing University. Thanks are due to Mr. Wang for assistance with writing and to Mr. Xu for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Ling Cai or X. S. Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhou, X., Li, M. et al. 2D/3D interface engineering: direct Z-scheme g-C3N4/YMnO3 heterojunction for reinforced visible-light photocatalytic oxidation. J Mater Sci: Mater Electron 30, 17601–17611 (2019). https://doi.org/10.1007/s10854-019-02109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02109-y

Navigation