Skip to main content
Log in

SnO2 nanorods arrays functionalized TiO2 nanoparticles based UV photodetector with high and fast response

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2 nanoparticles (NPs) based ultraviolet (UV) photodetectors (PDs) present extremely slow response duo to the low electron mobility of TiO2 (~ 0.1 to 1.0 cm2 V−1 S−1) and electron loss in conspicuous interspace among the TiO2 NPs. In this work, SnO2 nanorods (NRs) arrays with high electron mobility are proposed to improve electron transfer in TiO2 NPs by the highly oriented structure. Double layers of TiO2 NPs are deposited on the SnO2 NRs arrays by TiCl4 hydrolysis reaction. The top layer is consisted of TiO2 NPs clusters, which contributes to large UV light harvest and ensures high photoresponsivity. And the bottom layer of small TiO2 NPs are distributed on and into SnO2 NRs array, forming heterojunction between them, which favors for quick electrons transmit and ensures fast response rate. In contrast to most reported UV PDs based on other TiO2 nanostructures, the present SnO2 NRs arrays/TiO2 NPs based UV PDs simultaneously exhibit a short response time and a high photoresponsivity, which are less than 0.2 s (rise and decay time) and 21.6 A W−1, respectively. This response rate is almost one order of magnitude faster than that of pure-TiO2 NPs, while the responsivity still remains much higher than the commercial values (0.1–0.2 A W−1). The superior performance is ascribed to the large UV light harvest offered from the layer of TiO2 NPs clusters, the directional electron transmission channel provided by SnO2 NRs arrays and improved electrons transmit by heterojunctions formed between SnO2 and TiO2. Moreover, the present UV PDs with excellent UV light selectivity and fabulous detection sensitivity are competitive and highly applicable in UV detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Adv. Mater. 28(3), 403–433 (2016)

    Article  Google Scholar 

  2. W. Zheng, T. Bian, X. Li, M. Chen, X. Yan, Y. Dai, G. He, J. Alloy Compd. 712, 425–430 (2017)

    Article  Google Scholar 

  3. S. Ni, F. Guo, D. Wang, G. Liu, Z. Xu, L. Kong, J. Wang, S. Jiao, Y. Zhang, Q. Yu, J. Luo, B. Wang, Z. Li, C. Zhang, L. Zhao, ACS Sustain. Chem. Eng. 6(6), 7265–7272 (2018)

    Article  Google Scholar 

  4. W. Zheng, X. Li, G. He, X. Yan, R. Zhao, C. Dong, RSC Adv. 4(41), 21340–21346 (2014)

    Article  Google Scholar 

  5. H. Xiao, S. Yao, F. Qu, X. Zhang, X. Wu, Ceram. Int. 43(2), 1688–1694 (2017)

    Article  Google Scholar 

  6. J.T. Abdalla, Y.W. Huang, Q.J. Yu, J.Z. Wang, J.N. Wang, C.L. Yu, S.Y. Gao, S.J. Jiao, D.B. Wang, A.M. Alarabi, A. Abdellah, Mater. Technol. 32(7), 443–450 (2017)

    Article  Google Scholar 

  7. Y. Huang, J. Lin, L. Li, L. Xu, W. Wang, J. Zhang, X. Xu, J. Zou, C. Tang, J. Mater. Chem. C 3(20), 5253–5258 (2015)

    Article  Google Scholar 

  8. A. Dewasi, A. Mitra, J. Mater. Sci.: Mater. Electron. 29(11), 9209–9217 (2018)

    Google Scholar 

  9. L. Zheng, P. Yu, K. Hu, F. Teng, H. Chen, X. Fang, ACS Appl. Mater. Interfaces 8(49), 33924–33932 (2016)

    Article  Google Scholar 

  10. S. Mondal, D. Basak, Appl. Surf. Sci. 427, 814–822 (2018)

    Article  Google Scholar 

  11. Y.M. Hassan, S.A. Kakil, J. Mater. Sci.: Mater. Electron. 26(8), 6092–6098 (2015)

    Google Scholar 

  12. A.M. Bazargan, F. Sharif, S. Mazinani, N. Naderi, J. Mater. Sci.: Mater. Electron. 28(15), 11108–11113 (2017)

    Google Scholar 

  13. F. Cao, X. Ji, J. Mater. Sci.: Mater. Electron. 29(8), 6594–6600 (2018)

    Google Scholar 

  14. W. Zhao, L. He, X. Feng, H. Xiao, C. Luan, J. Ma, Ceram. Int. 44(17), 21114–21119 (2018)

    Article  Google Scholar 

  15. M. Huang, J. Yu, B. Li, C. Deng, L. Wang, W. Wu, L. Dong, F. Zhang, M. Fan, J. Alloy Compd. 629, 55–61 (2015)

    Article  Google Scholar 

  16. M.H. Zarifi, B. Wiltshire, N. Mahdi, P. Kar, K. Shankar, M. Daneshmand, Nanoscale 10(10), 4882–4889 (2018)

    Article  Google Scholar 

  17. J. Xu, W. Yang, H. Chen, L. Zheng, M. Hu, Y. Li, X. Fang, J. Mater. Chem. C 6(13), 3334–3340 (2018)

    Article  Google Scholar 

  18. F. Xie, J. Wang, Y. Li, J. Dou, M. Wei, Electrochim. Acta 296, 142–148 (2019)

    Article  Google Scholar 

  19. X. Hou, X. Wang, B. Liu, Q. Wang, Z. Wang, D. Chen, G. Shen, ChemElectroChem 1(1), 108–115 (2014)

    Article  Google Scholar 

  20. D. Chen, L. Wei, L. Meng, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, J. Jiao, Nanoscale Res. Lett. 13(1), 92 (2018)

    Article  Google Scholar 

  21. D. Chen, L. Wei, L. Meng, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, J. Jiao, J. Alloy Compd. 751, 56–61 (2018)

    Article  Google Scholar 

  22. X. Pan, L. Cheng, L. Chen, H. Li, J. Zhou, E. Xie, Sci. Adv. Mater. 11(3), 392–395 (2019)

    Article  Google Scholar 

  23. L. Liu, H. Ou, K. Hong, L. Wang, J. Alloy Compd. 749, 217–220 (2018)

    Article  Google Scholar 

  24. D. Zhang, X. Gu, F. Jing, F. Gao, J. Zhou, S. Ruan, J. Alloy Compd. 618, 551–554 (2015)

    Article  Google Scholar 

  25. L. Chen, X. Li, Y. Wang, C. Gao, H. Zhang, B. Zhao, F. Teng, J. Zhou, Z. Zhang, X. Pan, E. Xie, J. Power Sources 272, 886–894 (2014)

    Article  Google Scholar 

  26. X. Li, T. Peng, Y. Zhang, Y. Wen, Z. Nan, Mater. Res. Bull. 97, 517–522 (2018)

    Article  Google Scholar 

  27. Y. Huang, Q. Yu, J. Wang, X. Li, Y. Yan, S. Gao, F. Shi, D. Wang, C. Yu, Electron. Mater. Lett. 11(6), 1059–1065 (2015)

    Article  Google Scholar 

  28. S. Yang, J. Gong, Y. Deng, J. Mater. Chem. 22(28), 13899 (2012)

    Article  Google Scholar 

  29. X. Li, C. Gao, H. Duan, B. Lu, Y. Wang, L. Chen, Z. Zhang, X. Pan, E. Xie, Small 9(11), 2005 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (21506028), the Fundamental Research Funds for the Central Universities (DUT18RC(3)071) and State Key Laboratory of Fine Chemicals (KF1616).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenji Zheng or Gaohong He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Zheng, W., Yan, X. et al. SnO2 nanorods arrays functionalized TiO2 nanoparticles based UV photodetector with high and fast response. J Mater Sci: Mater Electron 30, 13099–13107 (2019). https://doi.org/10.1007/s10854-019-01673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01673-7

Navigation