Skip to main content
Log in

Improved response/recovery speeds of ZnO nanoparticle-based sensor toward NO2 gas under UV irradiation induced by surface oxygen vacancies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A fast and simple method using co-grinding with Fe powder followed by heat treatment is developed to regulate surface oxygen vacancy content of ZnO nanoparticles. The moderately increased surface oxygen vacancy is conducive to shortening the adsorption and desorption times of NO2 molecules, arising from the enhanced O2 adsorption. Therefore, the response and recovery speeds of ZnO nanoparticle-based sensor under UV irradiation were significantly promoted. Our findings not only offer a feasible strategy to modulate surface oxygen vacancy content of nanostructured oxides, but also provide a novel approach to improve the response and recovery speeds of light-activated NO2 sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Science 331, 746–750 (2011)

    Article  Google Scholar 

  2. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, A.C.S. Appl, Mater. Interfaces 4, 4024–4030 (2012)

    Article  Google Scholar 

  3. M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, K.J. Choi, J.H. Lee, S.H. Hong, Appl. Phys. Lett. 93, 263103 (2008)

    Article  Google Scholar 

  4. M. Epifani, E. Comini, R. Díaz, T. Andreu, A. Genç, J. Arbiol, P. Siciliano, G. Faglia, J.R. Morante, ACS Appl. Mater. Interfaces 6, 16808–16816 (2014)

    Article  Google Scholar 

  5. Z. Geng, X. Kong, W. Chen, W. Chen, H. Su, Y. Liu, F. Cai, G. Wang, J. Zeng, Angew. Chem. Int. Ed. 57, 6054–6059 (2018)

    Article  Google Scholar 

  6. X. Wu, A. Selloni, M. Lazzeri, S.K. Nayak, Phys. Rev. B 68, 241402 (2003)

    Article  Google Scholar 

  7. S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee, M.H. Cho, Nanoscale 5, 9238–9246 (2013)

    Article  Google Scholar 

  8. G. Ou, Y. Xu, B. Wen, R. Lin, B. Ge, Y. Tang, Y. Liang, C. Yang, K. Huang, D. Zu, R. Yu, W. Chen, J. Li, H. Wu, L.M. Liu, Nat. Commun. 9, 1302 (2018)

    Article  Google Scholar 

  9. Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai, Y. Zhu, Appl. Catal. B 138, 26–32 (2013)

    Article  Google Scholar 

  10. X. Lu, G. Wang, S. Xie, J. Shi, W. Li, Y. Tong, Y. Li, Chem. Commun. 48, 7717–7719 (2012)

    Article  Google Scholar 

  11. L. Kong, Z. Jiang, C. Wang, F. Wan, Y. Li, L. Wu, J.F. Zhi, X. Zhang, S. Chen, Y. Liu, ACS Appl. Mater. Interfaces. 7, 7752–7758 (2015)

    Article  Google Scholar 

  12. Q. Gan, H. He, K. Zhao, Z. He, S. Liu, S. Yang, ACS Appl. Mater. Interfaces. 10, 7031–7042 (2018)

    Article  Google Scholar 

  13. Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie, M. Jiang, Energy Environ. Sci. 6, 3007–3014 (2013)

    Article  Google Scholar 

  14. Z. Jing, J. Zhan, Adv. Mater. 20, 4547–4551 (2008)

    Article  Google Scholar 

  15. X. Pan, X. Liu, A. Bermak, Z. Fan, ACS Nano 7, 9318–9324 (2013)

    Article  Google Scholar 

  16. N. Barsan, D. Koziej, U. Weimar, Sens. Actuat. B 121, 18–35 (2007)

    Article  Google Scholar 

  17. X. Zhou, S. Lee, Z. Xu, J. Yoon, Chem. Rev. 115, 7944–8000 (2015)

    Article  Google Scholar 

  18. D.K. Kwon, Y. Porte, K.Y. Ko, H. Kim, J.M. Myoung, ACS Appl. Mater. Interfaces. 10, 31505–31514 (2018)

    Article  Google Scholar 

  19. E. Wu, Y. Xie, B. Yuan, H. Zhang, X. Hu, J. Liu, D. Zhang, ACS Sens. 3, 1719–1726 (2018)

    Article  Google Scholar 

  20. Y. Su, G. Xie, H. Tai, S. Li, B. Yang, S. Wang, Q. Zhang, H. Du, H. Zhang, X. Du, Y. Jiang, Nano Energy 47, 316–324 (2018)

    Article  Google Scholar 

  21. C. Zhang, X. Geng, H. Liao, C.J. Li, M. Debliquy, Sens. Actuat. B 242, 102–111 (2017)

    Article  Google Scholar 

  22. C. Zhang, X. Geng, J. Li, Y. Luo, P. Lu, Sens. Actuat. B 248, 886–893 (2017)

    Article  Google Scholar 

  23. Q. Zhang, G. Xie, H. Du, J. Yang, Y. Su, H. Tai, M. Xu, K. Zhao, Sci. China Technol. Sci. (2019). https://doi.org/10.1007/s11431-018-9409-1

    Google Scholar 

  24. A. Umar, R. Kumar, G. Kumar, H. Algarni, S.H. Kim, J. Alloys Compd. 648, 46–52 (2015)

    Article  Google Scholar 

  25. Q. Zhang, G. Xie, M. Xu, Y. Su, H. Tai, H. Du, Y. Jiang, Sens. Actuat. B 259, 269–281 (2018)

    Article  Google Scholar 

  26. R.Q. Song, A.W. Xu, B. Deng, Q. Li, G.Y. Chen, Adv. Funct. Mater. 17, 296–306 (2007)

    Article  Google Scholar 

  27. D. Liu, Y. Lv, M. Zhang, Y. Liu, Y. Zhu, R. Zong, Y. Zhu, J. Mater. Chem. A 2, 15377–15388 (2014)

    Article  Google Scholar 

  28. Q.P. Zhang, X.N. Xu, Y.T. Liu, M. Xu, S.H. Deng, Y. Chen, H. Yuan, F. Yu, Y. Huang, K. Zhao, S. Xu, G. Xiong, Sci. Rep. 7, 46424 (2017)

    Article  Google Scholar 

  29. Z. Pei, L. Ding, J. Hu, S. Weng, Z. Zheng, M. Huang, P. Liu, Appl. Catal. B 142, 736–743 (2013)

    Article  Google Scholar 

  30. A.B. Diurišić, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C.Y. Kwong, K.W. Cheah, T.K.G. Rao, W.K. Chan, H.F. Lui, C. Surya, Adv. Funct. Mater. 14, 856–864 (2004)

    Article  Google Scholar 

  31. H.L. Guo, Q. Zhu, X.L. Wu, Y.F. Jiang, X. Xie, A.W. Xu, Nanoscale 7, 7216–7223 (2015)

    Article  Google Scholar 

  32. Q. Zhang, M. Xu, B. You, Q. Zhang, H. Yuan, K.K. Ostrikov, Appl. Sci. 8, 353 (2018)

    Article  Google Scholar 

  33. M.K. Kavitha, H. John, P. Gopinath, Mater. Res. Bull. 49, 132–137 (2014)

    Article  Google Scholar 

  34. M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, M.M. Abdullah, Appl. Surf. Sci. 258, 7515–7522 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Funds for Creative Research Groups of China (No. 61421002), the National Natural Science Foundation of China (Grant Nos. 61571097, 61604033) and the National Postdoctoral Program for Innovative Talents (Grant No. BX201600026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhong Xie.

Ethics declarations

Conflict of interest

This research has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Chen, C., Liu, Y. et al. Improved response/recovery speeds of ZnO nanoparticle-based sensor toward NO2 gas under UV irradiation induced by surface oxygen vacancies. J Mater Sci: Mater Electron 30, 11395–11403 (2019). https://doi.org/10.1007/s10854-019-01488-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01488-6

Navigation