Skip to main content
Log in

Study on the effects of the magneto assisted deposition on ammonia gas sensing properties of polyaniline

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The flexible polyaniline (PAni) films were deposited on the polyethylene terephthalate (PET) substrates by a spin-coating method under different magnetic field (MF) strength from 0.0 to 0.7 T. By increasing the magnetic field strength, we observed that crystalline quality, surface area as well as protonation of the PAni films were increased. Room temperature (RT) ammonia gas sensing application of these films was also investigated and it was observed the gas sensing performance of the PAni films was improved by the increase of the magnetic field strength up to 0.5 T. It was seen, the important gas sensing device parameters such as sensitivity, selectivity, stability, and response time of the PAni film, which was deposited under 0.5 T of magnetic field condition, 7.5, 1.49, 1.21, and 7.5 times, respectively, were higher than the PAni film gas sensor that was deposited under 0.0 T of magnetic field condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.M. Soleimanpour, A.H. Jayatissa, G. Sumanasekera, Surface and gas sensing properties of nanocrystalline nickel oxide thin films. Appl. Surf. Sci. 276, 291–297 (2013)

    Article  Google Scholar 

  2. L.G. Close, F.I. Catlin, A.M. Cohn, Acute and chronic effects of ammonia burns of the respiratory tract. Arch. Otolaryngol. 106(3), 151–158 (1980)

    Article  Google Scholar 

  3. S. Sharma, A. Kumar, N. Singh, D. Kaur, Excellent room temperature ammonia gas sensing properties of n-MoS2/p-CuO heterojunction nanoworms. Sens. Actuators B 275, 499–507 (2018)

    Article  Google Scholar 

  4. S.M. Kanan, O.M. El-Kadri, I.A. Abu-Yousef, M.C. Kanan, Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 9, 8158–8196 (2009)

    Article  Google Scholar 

  5. A. Sáaedi, R. Yousefi, Improvement of gas-sensing performance of ZnO nanorods by group-I elements doping. J. Appl. Phys. 122, 224505 (2017)

    Article  Google Scholar 

  6. D. Zhang, Z. Wu, X. Zong, Flexible and highly sensitive H2S gas sensor based on in situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B 289, 32–41 (2019)

    Article  Google Scholar 

  7. C.-T. Lee, Y.-S. Wang, High-performance room temperature NH3 gas sensors based on polyaniline-reduced graphene oxide nanocomposite sensitive membrane. J. Alloys Compd. 789, 693–696 (2019)

    Article  Google Scholar 

  8. J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J. Phys. Chem. C 114(21), 9970–9974 (2010)

    Article  Google Scholar 

  9. Yang Li, Mingfei Jiao, Huijie Zhao, Mujie Yang, High performance gas sensors based on in situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties. Sens. Actuators B 264(1), 285–295 (2018)

    Article  Google Scholar 

  10. A.A. Syed, M.K. Dinesan, Review: polyaniline—a novel polymeric material. Talanta 38, 815–837 (1991)

    Article  Google Scholar 

  11. G.D. Khuspe, S.T. Navale, D.K. Bandgar, R.D. Sakhare, M.A. Chougule, V.B. Patil, SnO2 nanoparticles-modified polyaniline films as highly selective, sensitive, reproducible and stable ammonia sensors. Electron. Mater. Lett. 10, 191–197 (2014)

    Article  Google Scholar 

  12. D.K. Bandgar, S.T. Navale, Y.H. Navale, S.M. Ingole, F.J. Stadler, N. Ramgir, D.K. Aswal, S.K. Gupta, R.S. Mane, V.B. Patil, Flexible camphor sulfonic acid-doped PAni/α-Fe2O3 nanocomposite films and their room temperature ammonia sensing activity. Mater. Chem. Phys. 189, 191–197 (2017)

    Article  Google Scholar 

  13. P. Shabani, A. Qarehbaqi, F.A. Boroumand, Selective enhancement of intra-chain charge transport to improve ammonia sensing performance in polyaniline layers. Electron. Mater. Lett. 12(1), 107–112 (2016)

    Article  Google Scholar 

  14. A.G. Revelli, T. Kusne, J.L. Kowalewski, L.E. Snyder, G.K. Weiss, R.D. Fedder, D.N.Lambeth McCullough, Volatile organic compound detection using nanostructured copolymers. Nano Lett. 6, 1598–1602 (2006)

    Article  Google Scholar 

  15. S. Matindoust, A. Farzi, M. Baghaei-Nejad, M.H. Shahrokh-Abadi, Z. Zou, L.R. Zheng, Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods. J. Mater. Sci.: Mater. Electron. 28(11), 7760–7768 (2017)

    Google Scholar 

  16. J. Torbet, Y.F. Nicolau, D. Djurado, Orientation of CSA-protonated polyaniline chains in solution in m-cresol and in films induced by a high magnetic field. Synth. Met. 101, 825–826 (1999)

    Article  Google Scholar 

  17. O.P. Dimitriev, Formation of organic films via a magnetomechanical effect. J. Phys. D 40, 850–855 (2007)

    Article  Google Scholar 

  18. L. Ma, W. Lu, K.L. Huang, M.Y. Gan, C. Chen, J. Yan, Analysis and characterization of microscopic morphology and orientation structure of polyaniline polymerized in a constant magnetic field. Chin. J. Polym. Sci. 27, 487–492 (2009)

    Article  Google Scholar 

  19. I. Rintoul, C. Wandrey, Magnetic field effects on the free radical solution polymerization of acrylamide. Polymer 48, 1903–1914 (2007)

    Article  Google Scholar 

  20. D.K. Bandgar, S.T. Navale, S.R. Nalage, R.S. Mane, F.J. Stadler, D.K. Aswal, S.K. Gupta, V.B. Patil, Simple and low-temperature polyaniline-based flexible ammonia sensor: a step towards laboratory synthesis to economical device design. J. Mater. Chem. C 3, 9461–9468 (2015)

    Article  Google Scholar 

  21. J.H. Lee, M.S. Cho, H.J. Choi, M.S. Jhon, Effect of polymerization temperature on polyaniline based electrorheological suspensions. Colloid Polym. Sci. 227, 73–76 (1999)

    Article  Google Scholar 

  22. L. Ma, L. Luo, H. Ma, X. Li, W. Su, S. Hao, Characterization and analysis of the electrochemical properties of the polyaniline synthesized by emulsion polymerization in constant magnetic field (0.4 T). Chin. J. Chem. 28, 1871–1875 (2010)

    Article  Google Scholar 

  23. S.S. Pandule, M.R. Patil, R.S. Keri, Properties and ammonia gas sensing applications of different inorganic acid-doped poly (2-chloroanilines). Polym. Bull. 75(10), 4469–4483 (2018)

    Article  Google Scholar 

  24. L. Ma, W. Lu, M. Gan, Influences of constant magnetic field (0.4 T) on PANI micro-orientation structure. J. Chem. 66, 1259–1264 (2008)

    Google Scholar 

  25. A.Z. Sadek, C.O. Baker, D.A. Powell, W. Wlodarski, R.B. Kaner, K. Kalantarzadeh, Polyaniline nanofiber based surface acoustic wave gas sensors—effect of nanofiber diameter on H2 response. IEEE Sens. J. 7, 213–218 (2007)

    Article  Google Scholar 

  26. J.E. Albuquerque, L.H.C. Mattoso, R.M. Faria, J.G. Masters, A.G. MacDiarmid, Study of the interconversion of polyaniline oxidation states by optical absorption spectroscopy. Synth. Met. 146, 1 (2004)

    Article  Google Scholar 

  27. R.P. McCall, J.M. Ginder, M.G. Roe, G.E. Asturias, E.M. Scherr, A.G. MacDiarmid, A.J. Epstein, Massive polarons in large-energy-gap polymers”. J. Phys. Rev. B 39, 10174–10179 (1989)

    Article  Google Scholar 

  28. M. Trchovaa, J. Stejskal, Polyaniline: the infrared spectroscopy of conducting polymer nanotubes. J. Pure Appl. Chem. 83, 1801 (2011)

    Article  Google Scholar 

  29. J. Dominic, T. David, A. Vanaja, K.K.S. Kumar, Effect of LiCl on conductivity of polyaniline synthesized via in-situ chemical oxidative method. Eur. Polym. J. 85, 236–243 (2016)

    Article  Google Scholar 

  30. H.R. Tantawy, B.-A.F. Kengne, D.N. McIlroy, T. Nguyen, D. Heo, Y. Qiang, D. Eric Aston, X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders. J. Appl. Phys. 118, 175501 (2015)

    Article  Google Scholar 

  31. G. Ren, H. Qiu, Q. Wu, H. Li, H. Fan, C. Fang, Thermal stability of composites containing HCl-doped polyaniline and Fe nanoparticles. Mater. Chem. Phys. 120, 127–133 (2010)

    Article  Google Scholar 

  32. M.G. Han, S.S. Im, X-ray photoelectron spectroscopy study of electrically conducting polyaniline/polyimide blends. Polymer 41, 3253–3262 (2000)

    Article  Google Scholar 

  33. H.R. Tantawy, D.E. Aston, J.R. Smith, J.L. Young, A comparison of electromagnetic shielding with polyaniline nanopowders produced in solvent-limited conditions. ACS Appl. Mater. Interfaces 5(11), 4648–4658 (2013)

    Article  Google Scholar 

  34. H.R. Tantawy, A.T. Weakley, D.E. Aston, Chemical effects of a solvent-limited approach to HCl-doped polyaniline nanopowder synthesis. J. Phys. Chem. C 118, 1294–1305 (2014)

    Article  Google Scholar 

  35. D. Thomas, A. Thomas, A.E. Tom, K.K. Sadasivuni, D. Ponnamma, S. Goutham, J.J. Cabibihan, K.V. Rao, Highly selective gas sensors from photo-activated ZnO/PANI thin films synthesized by mSILAR. Synth. Met. 232, 123–130 (2017)

    Article  Google Scholar 

  36. L. Wang, H. Huang, S. Xiao, D. Cai, Y. Liu, B. Liu, D. Wang, C. Wang, H. Li, Y. Wang, Q. Li, T. Wang, Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanoparticles@cross-linked PANI with p–n heterojunctions. ACS Appl. Mater. Interfaces 6(16), 14131–14140 (2014)

    Article  Google Scholar 

  37. X.L. Huang, N.T. Hu, R.G. Gao, Y. Yu, Y.Y. Wang, Z. Yang, E.S. Kong, H. Wei, Y.F. Zhang, Reduced graphene oxide − polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22, 22488–22495 (2012)

    Article  Google Scholar 

  38. Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B 178, 485–493 (2013)

    Article  Google Scholar 

  39. H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Fabrication and gas sensitivity of polyaniline − titanium dioxide nanocomposite thin film. Sens. Actuators B 125, 644–650 (2007)

    Article  Google Scholar 

  40. M. Das, D. Sarkar, One-pot synthesis of zinc oxide-polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor. Ceram. Int. 43, 11123–11131 (2017)

    Article  Google Scholar 

  41. S.T. Navale, A.T. Mane, M.A. Chougule, V.B. Patil, Highly sensitive, reproducible, selective and stable CSA-polypyrrole NO2 sensor. Synth. Met. 189, 111–118 (2014)

    Article  Google Scholar 

  42. A.G. Sonkusare, S. Tyagi, R. Kumar, S. Mishra, Room temperature ammonia gas sensing using polyaniline nanoparticles based sensor. Int. J. Mater. 12(2), 283–291 (2017)

    Google Scholar 

  43. A.L. Kukla, Y.M. Shirshov, S.A. Piletsky, Ammonia sensors based on sensitive polyaniline films. Sens. Actuators B 37(3), 135–140 (1996)

    Article  Google Scholar 

  44. S. Bai, Y. Tian, M. Cui, J. Sun, Y. Tian, R. Luo, A. Chen, D. Li, Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature. Sens. Actuators B 226, 540–547 (2016)

    Article  Google Scholar 

  45. A. Mani, K. Athinarayanasamy, P. Kamaraj, S.T. Selvan, S. Ravichandran, K.L.N. Phani, S. Pitchumani, Crystalline order in polyaniline. Mater. Sci. Lett. 14(22), 1594–1596 (1995)

    Article  Google Scholar 

  46. S. Bai, Y. Zhao, J. Sun, Z. Tong, R. Luo, D. Li, A. Chen, Preparation of conducting films based on α-MoO3/PANI hybrids and their sensing properties to triethylamine at room temperature. Sens. Actuators B 239, 131–138 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

R. Yousefi and P. Shabani gratefully acknowledge the Islamic Azad University (I.A.U), Masjed-Soleiman and Mahshahr Branches for their supports of this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pejman Shabani or Ramin Yousefi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sáaedi, A., Shabani, P. & Yousefi, R. Study on the effects of the magneto assisted deposition on ammonia gas sensing properties of polyaniline. J Mater Sci: Mater Electron 30, 10765–10775 (2019). https://doi.org/10.1007/s10854-019-01420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01420-y

Navigation