Skip to main content
Log in

Optical and dielectric properties of Nd and Sm-doped Bi5Ti3FeO15

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rare earth-doping of bismuth titanates is one of the main strategies to improve their optoelectronic properties, as it is useful for several types of application. In this context, this work aimed to produce a samarium and neodymium-doped Bi5Ti3FeO15 compound and evaluate the impacts of doping on its optical and electrical responses. Thus, the materials were produced by a solid state reaction and characterized by X-ray diffraction, Raman scattering, infrared absorption, X-ray fluorescence, scanning electron microscopy, impedance spectroscopy and diffuse reflectance spectroscopy. The results revealed that doping was successfully attained with no detectable secondary phase. Site specific substitution was observed for both dopants, in a typical Aurivillius-layered structure. The samples demonstrated high electrical resistance and both dopants actuated positively for the material’s dielectric performance. However, samarium displayed the best results for dielectric application, taking into account the increment of enthalpy for defects motion and higher dielectric permittivity. On the other hand, the evaluation of optical properties demonstrated that neodymium had bands of radiation absorption at visible and near-infrared spectra, which can be useful for devices such as selective optical detectors. Therefore, these results corroborate with the potentiality of rare earth doping for modifying the properties of bismuth iron titanates for specific optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.F. Zhang, N. Deepak, L. Keeney, M.E. Pemble, R.W. Whatmore, Appl. Phys. Lett. 101, 112903 (2012)

    Article  Google Scholar 

  2. Y. Zhao, H. Fan, G. Liu, Z. Liu, X. Ren, J. Alloys Compd. 675, 441 (2016)

    Article  CAS  Google Scholar 

  3. M. Wu, Z. Tian, S. Yuan, Z. Huang, Mater. Lett. 68, 190 (2012)

    Article  CAS  Google Scholar 

  4. T. Jia, H. Kimura, Z. Cheng, H. Zhao, Y. Kim, M. Osada, T. Matsumoto, N. Shibata, Y. Ikuhara, NPG Asia Mater. 9, 349 (2017)

    Article  Google Scholar 

  5. P.P. Jiang, Z.H. Duan, L.P. Xu, X.L. Zhang, Y.W. Li, Z.G. Hu, J.H. Chu, J. of Appl. Phys. 115, 083101 (2014)

    Article  Google Scholar 

  6. A. Mohapatra, P.R. Das, R.N.P. Choudhary, J. Mater. Sci. 27, 9136 (2016)

    CAS  Google Scholar 

  7. G. Chen, W. Bai, L.S. Sun, Q. Ren, W. Xu, J. Yang, X. Meng, X. Tang, C. Duan, J. Chu, J. Appl. Phys. 113, 034901 (2013)

    Article  Google Scholar 

  8. J. Li, L. Luo, L. Feng, K. Liang, J. Su, C. Lu, J. Mater. Sci. 29, 16027 (2018)

    CAS  Google Scholar 

  9. S. Nakashima, H. Furisawa, S. Ichikawa, J.M. Park, T. Kanashima, M. Okuyama, M. Shimizu, J. Appl. Phys. 108, 074106 (2010)

    Article  Google Scholar 

  10. J.D. Bobic, R.M. Katiliute, M. Ivanov, M.M.V. Petrovic, N.I. Ilic, A.S. Dzunuzovic, J. Banys, B.D. Stojanovic, J. Mater. Sci. 27, 2448 (2016)

    CAS  Google Scholar 

  11. Z. Lazarevi, B.D. Stojanovi, J.A. Varela, Sci. Sinter. 37, 199 (2005)

    Article  Google Scholar 

  12. W.S. Choi, H.N. Lee, Appl. Phys. Lett. 100, 132903 (2012)

    Article  Google Scholar 

  13. K. Liang, Y. Qi, C. Lu, J. Raman Spectrosc. 40, 2088 (2009)

    Article  CAS  Google Scholar 

  14. F. Rehman, H. Jin, L. Wang, A. Tanver, D. Su, J. Li, RSC Adv. 6, 21254 (2016)

    Article  CAS  Google Scholar 

  15. J. Paul, S. Bhardwaj, K.K. Sharma, R.K. Kotnala, R. Kumar, J. Alloys Compd. 634, 58 (2015)

    Article  CAS  Google Scholar 

  16. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment and Applications, 2nd edn. (Wiley, New Jersey, 2005), pp. 8–243

    Book  Google Scholar 

  17. W. Kingery, H. Bowen, Introduction to Ceramics, 2nd edn. (Wiley, New York, 1976), pp. 912–972

    Google Scholar 

  18. P. Kubelka, F. Munk, Zeitschr. F. Techn. Physik 12, 593 (1931)

    Google Scholar 

  19. O. Schevciw, B. White, Mat. Res. Bul. 18, 1059 (1983)

    Article  CAS  Google Scholar 

  20. J. Tauc, Phys. Rev. B 5, 3144 (1972)

    Article  Google Scholar 

  21. G.G. Macfarlane, T.P. McLean, J.E. Quarrington, V. Roberts, Phys. Rev. 108, 1377 (1958)

    Article  Google Scholar 

  22. A. Looijenga-Vos, M.J. Buerger, in International Tables for Crystallography -Volume A, 5th edn., ed. by T. Hahn (Springer, Dordrecht, 2005), pp. 49–50

    Google Scholar 

  23. E.F. Bertaut, in International Tables for Crystallography—Volume A, 5th edn., ed. by T. Hahn (Springer, Dordrecht, 2005), pp. 65–66

    Google Scholar 

  24. P.P. Jiang, Z.H. Duan, L.P. Xu, X.L. Zhang, Y.W. Li, Z.G. Hu, J.H. Chu, J. Appl. Phys. 115, 83101 (2014)

    Article  Google Scholar 

  25. D. Wu, Y. Deng, C.I. Mak, K.H. Wong, A.D. Li, M.S. Zhang, N.B. Ming, Appl. Phys. A 80, 607 (2005)

    Article  CAS  Google Scholar 

  26. M.S. Tomar, R.E. Melgarejo, S.P. Singh, Microelectron. J. 36, 574 (2006)

    Article  Google Scholar 

  27. R. Ti, X. Lu, J. He, F. Huang, H. Wu, F. Mei, M. Zhou, Y. Li, T. Xu, J. Zhu, J. Mater. Chem. C 3, 11868 (2015)

    Article  CAS  Google Scholar 

  28. H. Zhang, H. Ke, P. Ying, H. Luo, L. Zhang, W. Wang, D. Jia, Y. Zhou, J. Sol-Gel. Sci. Technol. 85, 132 (2017)

    Article  Google Scholar 

  29. R.A. Nyquist, Infrared and Raman Spectral Atlas of Inorganic Compounds (3800–3845 cm −1 ), 1st edn. (Academic Press, San Diego, 1997), pp. 100–101

    Google Scholar 

  30. A. Mohapatra, P.R. Das, R.N. Choudhary, J. Mater. Sci. 25, 1348 (2014)

    CAS  Google Scholar 

  31. R.A. Talewar, C.P. Joshi, S.V. Moharil, J. Lumin. 197, 1 (2018)

    Article  CAS  Google Scholar 

  32. A. Vyas, C.P. Joshi, P.D. Sahare, S.V. Moharil, J. Alloys Compd. 743, 789 (2018)

    Article  CAS  Google Scholar 

  33. J. Azevedo, J. Coelho, G. Hungerford, N.S. Hussain, Physica B Condens. Matter. 405, 4696 (2010)

    Article  CAS  Google Scholar 

  34. G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, 1st edn. (Interscience Publishers, New York, 1968), p. 202

    Google Scholar 

  35. B. Henderson, G.F. Imbusch, Optical Spectroscopy of Inorganic Solids, 1st edn. (Oxford University Press, New York, 2006), p. 389

    Google Scholar 

  36. R. Bazzi, A. Brenier, P. Perriat, O. Tillement, J. Lumin. 113, 161 (2005)

    Article  CAS  Google Scholar 

  37. J.A. Dias, J.A. Oliveira, C.G. Renda, M.R. Morelli, Mat. Res. (2018). https://doi.org/10.1590/1980-5373-mr-2018-0118

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES and Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (Grants Nos. 43828151/0002-26 and 2015/23329-3) for the financial support, to Embrapa-Instrumentação (MSc. Silviane Zanni Humbinger), UNIFAL, Laboratório Interdisciplinar em Eletroquímica e Cerâmica (LIEC-UFSCar), LaMaV (Prof. Dr. Ana Candida Martins Rodrigues) and Laboratório de Caracterização Estrutural (LCE/DEMa), for the technical assistance and use of general facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeferson Almeida Dias.

Ethics declarations

Conflict of interest

This research has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, J.A., Bretas, R.E.S., Marcondes, L.M.S. et al. Optical and dielectric properties of Nd and Sm-doped Bi5Ti3FeO15. J Mater Sci: Mater Electron 30, 16812–16820 (2019). https://doi.org/10.1007/s10854-019-01363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01363-4

Navigation