Skip to main content

Advertisement

Log in

Nanocellulose-derived carbon nanosphere fibers-based nanohybrid aerogel for high-performance all-solid-state flexible supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to meet the urgent needs of portable and flexible devices in today’s society, it is strongly demanded to develop a next-generation, low-cost, flexible, lightweight, and sustainable supercapacitor system with high electrochemical performance and good operational safety. Here, a new type of highly flexible and lightweight all-solid-state supercapacitor is developed by using the freestanding and highly porous nanohybrid aerogel films consisting of carbon nanosphere fibers (CNPFs)/molybdenum disulfide (MoS2)/reduced graphene oxide (RGO) as electrodes and using H2SO4/polyvinyl alcohol (PVA) gel as electrolyte. The CNPFs/MoS2/RGO nanohybrid aerogels are prepared by one-step pyrolysis of the nanocellulose fibers (NCFs)/MoS2/graphene oxide (GO) aerogels obtained via freeze-drying process. During the pyrolysis process, the NCFs is carbonized to CNPFs and the GO is thermally reduced to RGO. The as-prepared all-solid-state flexible supercapacitors exhibit high specific capacitance of 1144.3 F g−1 at 2 mV s−1 with good cycling stability of more than 98% of the capacitance is retained after 10,000 charge–discharge cycles at a current density of 5 mA cm−2. Moreover, they can deliver high energy density and power density which are up to 57.5 µW h cm−2 (28.8 W h kg−1) and 29.1 mW cm−2 (14.5 kW kg−1), respectively. Therefore, we provide the highly porous CNPFs/MoS2/RGO nanohybrid aerogels with characteristics of superior electrochemical performance, remarkable bending stability, environmental friendliness and low cost will be a potential promising electrode material for highly flexible all-solid-state supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  2. H.C. Chien, W.Y. Cheng, Y.H. Wang, S.Y. Lu, Adv. Funct. Mater. 22, 5038–5043 (2012)

    Article  CAS  Google Scholar 

  3. Y.H. Lin, T.Y. Wei, H.C. Chien, S.Y. Lu, Adv. Energy Mater. 1, 901–907 (2011)

    Article  CAS  Google Scholar 

  4. X. Yang, J. Zhu, L. Qiu, D. Li, Adv. Mater. 23, 2833–2838 (2011)

    Article  CAS  Google Scholar 

  5. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, Energy Environ. Sci. 4, 2826–2830 (2011)

    Article  CAS  Google Scholar 

  6. C.X. Guo, C.M. Li, Energy Environ. Sci. 4, 4504–4507 (2011)

    Article  CAS  Google Scholar 

  7. S.R. Forrest, Nature 428, 911–918 (2004)

    Article  CAS  Google Scholar 

  8. C.D.D.D.J. Mascaro, IBM J. Res. Dev. 45, 11–27 (2001)

    Article  Google Scholar 

  9. M.R. Gao, Y.F. Xu, J. Jiang, S.H. Yu, Chem. Soc. Rev. 42, 2986–3017 (2013)

    Article  CAS  Google Scholar 

  10. M. Pumera, Z. Sofer, A. Ambrosi, J. Mater. Chem. A 2, 8981–8987 (2014)

    Article  CAS  Google Scholar 

  11. Y.F. Li, Z. Zhou, S.B. Zhang, Z.F. Chen, J. Am. Chem. Soc. 130, 16739–16744 (2008)

    Article  CAS  Google Scholar 

  12. K.C.a.W. Chen, ACS Nano 5, 4720–4728 (2011)

    Article  Google Scholar 

  13. R. Tenne, Adv. Mater. 7, 965–995 (1995)

    Article  CAS  Google Scholar 

  14. J.M. Soon, K.P. Loh, Electrochemical and Solid State Letters 10, A250–A254 (2007)

    Article  CAS  Google Scholar 

  15. S.J. Ding, J.S. Chen, X.W. Lou, Chemistry 17, 13142–13145 (2011)

    Article  CAS  Google Scholar 

  16. K. Chang, W.X. Chen, L. Ma, H. Li, H. Li, F.H. Huang, Z.D. Xu, Q.B. Zhang, J.Y. Lee, J. Mater. Chem. 21, 6251–6257 (2011)

    Article  CAS  Google Scholar 

  17. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  CAS  Google Scholar 

  18. L.L. Zhang, R. Zhou, X.S. Zhao, J. Mater. Chem. 20, 5983–5992 (2010)

    Article  CAS  Google Scholar 

  19. X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan, B. Liu, J. Mater. Chem. 21, 6494–6497 (2011)

    Article  CAS  Google Scholar 

  20. F. Liu, S. Song, D. Xue, H. Zhang, Adv. Mater. 24, 1089–1094 (2012)

    Article  CAS  Google Scholar 

  21. L.L. Zhang, X. Zhao, M.D. Stoller, Y.W. Zhu, H.X. Ji, S. Murali, Y.P. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Nano Lett. 12, 1806–1812 (2012)

    Article  CAS  Google Scholar 

  22. M. Pumera, Energy Environ. Sci. 4, 668–674 (2011)

    Article  CAS  Google Scholar 

  23. K. Zhang, L. Mao, L.L. Zhang, H.S.O. Chan, X.S. Zhao, J.S. Wu, J. Mater. Chem. 21, 7302–7307 (2011)

    Article  CAS  Google Scholar 

  24. L.Y. Yuan, X.H. Lu, X. Xiao, T. Zhai, J.J. Dai, F.C. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C.G. Hu, Y.X. Tong, J. Zhou, Z.L. Wang, Acs Nano 6, 656–661 (2012)

    Article  CAS  Google Scholar 

  25. H. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, Angew. Chemie-Int. Ed. 49, 4059–4062 (2010)

    Article  CAS  Google Scholar 

  26. R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev. 40, 3941–3994 (2011)

    Article  CAS  Google Scholar 

  27. D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Angew. Chem. Int. Ed. 50, 5438–5466 (2011)

    Article  CAS  Google Scholar 

  28. Y.Y. Lv, L. Li, Y. Zhou, M. Yu, J.Q. Wang, J.X. Liu, J.G. Zhou, Z.Q. Fan, Z.Q. Shao, Rsc Adv. 7, 43512–43520 (2017)

    Article  CAS  Google Scholar 

  29. W. Chen, H. Yu, Q. Li, Y. Liu, J. Li, Soft matter 7, 10360–10368 (2011)

    Article  CAS  Google Scholar 

  30. Q. Zheng, Z. Cai, S. Gong, J. Mater. Chem. A 2, 3110–3118 (2014)

    Article  CAS  Google Scholar 

  31. H. Sehaqui, Q. Zhou, L.A. Berglund, Compos. Sci. Technol. 71, 1593–1599 (2011)

    Article  CAS  Google Scholar 

  32. C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Nano Lett. 10, 4025–4031 (2010)

    Article  CAS  Google Scholar 

  33. V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, Nat. Nanotechnol. 4, 25–29 (2009)

    Article  CAS  Google Scholar 

  34. A. Isogai, T. Saito, H. Fukuzumi, Nanoscale 3, 71–85 (2011)

    Article  CAS  Google Scholar 

  35. L.P. Wang, C. Schutz, G. Salazar-Alvarez, M.M. Titirici, Rsc Advances 4, 17549–17554 (2014)

    Article  CAS  Google Scholar 

  36. G.X. Wang, J. Yang, J. Park, X.L. Gou, B. Wang, H.Liu,J. Yao, J. Phys. Chem. C 112, 8192–8195 (2008)

    Article  CAS  Google Scholar 

  37. G. Tonoli, E. Teixeira, A. Corrêa, J. Marconcini, L. Caixeta, M. Pereira-da-Silva, L. Mattoso, Carbohydr. Polym. 89, 80–88 (2012)

    Article  CAS  Google Scholar 

  38. X.-L. Li, Y.-D. Li, J. Phys. Chem. B 108, 13893–13900 (2004)

    Article  CAS  Google Scholar 

  39. K. Gao, Z. Shao, J. Li, X. Wang, X. Peng, W. Wang, F. Wang, J. Mater. Chem. A 1, 63–67 (2013)

    Article  CAS  Google Scholar 

  40. S. Liu, X. Zhang, H. Shao, J. Xu, F. Chen, Y. Feng, Mater. Lett. 73, 223–225 (2012)

    Article  CAS  Google Scholar 

  41. Y. Kong, M.H. Fan, X.D. Shen, S. Cuibc, A.G. Russelld, Chem. Commun. 50, 12158–12161 (2014)

    Article  CAS  Google Scholar 

  42. M. Kruk, M. Jaroniec, Chem. Mater. 13, 3169–3183 (2001)

    Article  CAS  Google Scholar 

  43. A. Di Fabio, A. Giorgi, M. Mastragostino, F. Soavi, J. Electrochem. Soc. 148, A845–A850 (2001)

    Article  Google Scholar 

  44. H. Fei, N. Saha, N. Kazantseva, T. Babkova, M. Machovsky, G. Wang, H. Bao, P. Saha, J. Mater. Sci. 29, 3025–3034 (2017)

    Google Scholar 

  45. F. Huang, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, J. Mater. Sci. 29, 2525–2536 (2017)

    Google Scholar 

  46. M.A. Maier, R. Suresh Babu, D.M. Sampaio, A.L.F. de Barros, J. Mater. Sci. 28, 17405–17413 (2017)

    CAS  Google Scholar 

  47. S. Sundriyal, M. Sharma, A. Kaur, S. Mishra, J. Mater. Sci. 29, 12754–12764 (2018)

    CAS  Google Scholar 

  48. X.F. Yuan, B. Tang, Y.W. Sui, S.F. Huang, J.Q. Qi, Y.G. Pu, F.X. Wei, Y.Z. He, Q.K. Meng, P. Cao, J. Mater. Sci. 29, 8636–8648 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support of the Key Science and Technology Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqiang Shao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 705 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Zhou, Y., Shao, Z. et al. Nanocellulose-derived carbon nanosphere fibers-based nanohybrid aerogel for high-performance all-solid-state flexible supercapacitors. J Mater Sci: Mater Electron 30, 8585–8594 (2019). https://doi.org/10.1007/s10854-019-01180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01180-9

Navigation