Skip to main content
Log in

Synthesis of RGO and g-C3N4 hybrid with WO3/Bi2WO6 to boost degradation of nitroguanidine under visible light irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A cetyltrimethylammonium bromide (CTAB) assisted bottom-up route to prepare Bi2WO6 fraction-let materials. WO3/Bi2WO6 binary hybrid with 2-D structure was designed by a facile hydrothermal process. Subsequently, RGO and g-C3N4 nanosheets were incorporated into WO3/Bi2WO6 via a cost-effective process. These nano-components of smart materials could simultaneously absorb and degrade contaminants in visible light. Nitroguanidine is an energetic material and harmful to the environment when released into the water. According to the data, NQ is more soluble in water than TNT or RDX, so NQ is more likely to cause water pollution. In this paper, the NQ in wastewater was degraded by using the RGO and g-C3N4 doped WO3/Bi2WO6. The results indicated that RGO-WO3/Bi2WO6(R-W-B) and g-C3N4-WO3/Bi2WO6 (G-W-B) showed greater degradation rate (0.02731 min− 1 and 0.02462 min− 1) as compare to WO3/Bi2WO6 (0.0084 min− 1). The improved photocatalytic performance of G-W-B or R-W-B accredited to the cascade structure of the synthesized materials. For G-W-B, the holes transferred from WO3 to Bi2WO6 and then to g-C3N4 which prolong the lifetime of photo-generated charges via the valence band potential gradient. The electrons transferred from Bi2WO6 to WO3 then to RGO for R-W-B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 1
Fig. 14

Similar content being viewed by others

References

  1. K. Huo, B. Gao, J. Fu, L. Zhao, P.K. Chu, RSC Adv. 4, 17300 (2014)

    Article  Google Scholar 

  2. M.A. Khan, S. Mutahir, F. Wang, W. Lei, M. Xia, S. Zhu, J. Hazard. Mater. 367, 293 (2019). https://doi.org/10.1016/j.jhazmat.2018.12.095

    Article  Google Scholar 

  3. M.A. Khan, S. Mutahir, F. Wang et al., J. Photochem. Photobiol., A 364, 826 (2018). https://doi.org/10.1016/j.jphotochem.2018.04.035

    Article  Google Scholar 

  4. C. Zhang, G. Chen, C. Li et al., ACS Sustain. Chem. Eng. 4, 5936 (2016)

    Article  Google Scholar 

  5. J. Choi, D.A. Reddy, T.K. Kim, Ceram. Int. 41, 13793 (2015)

    Article  Google Scholar 

  6. Q. Xiao, J. Zhang, C. Xiao, X. Tan, Catal. Commun. 9, 1247 (2008). https://doi.org/10.1016/j.catcom.2007.11.011

    Article  Google Scholar 

  7. L. Zhang, Y. Man, Y. Zhu (2011) ACS Catal. 1, 841. https://doi.org/10.1021/cs200155z

    Article  Google Scholar 

  8. D. Liu, J. Huang, X. Tao, D. Wang, RSC Adv. 5, 66464 (2015)

    Article  Google Scholar 

  9. Y. Wang, X. Bai, C. Pan, J. He, Y. Zhu, J. Mater. Chem. 22, 11568 (2012)

    Article  Google Scholar 

  10. Y. Xiong, L. Che, Z. Fu, P. Ma, Adv. Powder Technol. (2018). https://doi.org/10.1039/C3RA44191A

    Google Scholar 

  11. J. Cheng, S. Zhang, B. Meng, J. Ding, X. Tan, J. Alloy. Compd. 742, 966 (2018)

    Article  Google Scholar 

  12. J. Xia, J. Di, S. Yin et al., Chem. Inform. 45, 82 (2014)

    Google Scholar 

  13. X. Huang, H. Chen, J. Mater. Chem. 284, 843 (2013)

    Google Scholar 

  14. Q. Xiao, J. Zhang, C. Xiao, X. Tan, Catal. Commun. 9, 1247 (2008)

    Article  Google Scholar 

  15. G.-H. He, G.-L. He, A.-J. Li et al., J. Mol. Catal. A: Chem. 385, 106 (2014). https://doi.org/10.1016/j.molcata.2014.01.022

    Article  Google Scholar 

  16. M.-S. Gui, W.-D. Zhang, Y.-Q. Chang, Y.-X. Yu, Chem. Eng. J. 197, 283 (2012). https://doi.org/10.1016/j.cej.2012.05.032

    Article  Google Scholar 

  17. M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, J. Ind. Eng. Chem. 62, 1–25 (2018)

    Article  Google Scholar 

  18. M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-018-9144-7

    Google Scholar 

  19. J. Li, Z. Liu, Z. Zhu, Appl. Surf. Sci. 320, 146 (2014)

    Article  Google Scholar 

  20. D.A. Reddy, S. Lee, J. Choi et al., Appl. Surf. Sci. 341, 175 (2015)

    Article  Google Scholar 

  21. Z. Zhu, Y. Yan, J. Li, J. Alloy. Compd. 651, 184 (2015). https://doi.org/10.1016/j.jallcom.2015.08.137

    Article  Google Scholar 

  22. Y. Li, L. Chen, Y. Wang, L. Zhu, Mater. Sci. Eng. 210, 29 (2016). https://doi.org/10.1016/j.mseb.2016.03.010

    Article  Google Scholar 

  23. Z. Zhu, Y. Yan, J. Li, J. Mater. Sci. 51, 2112 (2015). https://doi.org/10.1007/s10853-015-9521-z

    Article  Google Scholar 

  24. L. Zhang, H. Wang, Z. Chen, P.K. Wong, J. Liu, Appl. Catal. B: Environ. (2011). https://doi.org/10.1016/j.apcatb.2011.05.008

    Google Scholar 

  25. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, M. Abedi (2018) Sep. Purif. Technol. 199, 64–77

    Article  Google Scholar 

  26. A. Habibi-Yangjeh, M. Mousavi, Adv. Powder Technol. (2018). https://doi.org/10.1016/j.molcata.2014.01.022

    Google Scholar 

  27. I.M. Jahurul, H.K. Kim, R.D. Amaranatha et al., Dalton Trans. 46, 6013 (2017)

    Article  Google Scholar 

  28. G.H. He, G.L. He, A.J. Li et al., J. Mol. Catal. A Chem. 385, 106 (2014)

    Article  Google Scholar 

  29. C. Chen, W. Ma, J. Zhao, Chem. Inform. 39, 4206 (2010)

    Google Scholar 

  30. G. Todde, S. Jha, G. Subramanian, M. Shukla, Surf. Sci. 668, 54 (2017)

    Article  Google Scholar 

  31. J.L. Davis, A.H. Wani, B.R. O’Neal, L.D. Hansen, J. Hazard. Mater. 112, 45 (2004)

    Article  Google Scholar 

  32. T. Temple, M. Ladyman, N. Mai et al., Sci. Total Environ. 625, 1264 (2018)

    Article  Google Scholar 

  33. D.A. Reddy, R. Ma, T.K. Kim, Ceram. Int. 41, 6999 (2015)

    Article  Google Scholar 

  34. H. Dong, G. Zeng, L. Tang et al., Water Res. 79, 128 (2015)

    Article  Google Scholar 

  35. J. Wang, C. Qin, H. Wang et al., Appl. Catal. B 221, 459 (2018)

    Article  Google Scholar 

  36. M. Mousavi, A. Habibi-Yangjeh, J. Mater. Sci. 53, 9046 (2018)

    Article  Google Scholar 

  37. Z.G. Zhao, M. Miyauchi, Angew. Chem. 120, 7051 (2008)

    Article  Google Scholar 

  38. J. Guerrero-Contreras, F. Caballero-Briones, Mater. Chem. Phys. 153, 209 (2015)

    Article  Google Scholar 

  39. X. Fan, X. Yue, J. Luo, C. Wang, J. Nanopart. Res. (2016). https://doi.org/10.1007/s11051-016-3368-3

    Google Scholar 

  40. X. Dong, F. Cheng, J. Mater. Chem. A 3, 23642 (2015)

    Article  Google Scholar 

  41. Y. Wang, M. Xia, K. Li, X. Shen, T. Muhanmood, F. Wang (2016) Phys. Chem. Chem. Phys. 18, 27257–27264

    Article  Google Scholar 

  42. N. Ali, T. Kamal, M. Ul-Islam, A. Khan, S.J. Shah, A. Zada, Int. J. Biol. Macromol. 111, 832 (2018)

    Article  Google Scholar 

  43. H. Shi, G. Chen, C. Zhang, Z. Zou, ACS Catal. 4, 3637 (2014)

    Article  Google Scholar 

  44. Z. Zhu, Y. Ying, J. Li, J. Mater. Sci. 51, 2112 (2016)

    Article  Google Scholar 

  45. Z.G. Zhao, M. Miyauchi, Angew. Chem. 120, 7159 (2008)

    Article  Google Scholar 

  46. Z. Zhu, Y. Yan, J. Li, J. Mater. Sci. 51, 2112 (2016)

    Article  Google Scholar 

  47. J. Yu, J. Xiong, B. Cheng, Y. Yu, J. Wang, J. Solid State Chem. 178, 1968 (2005)

    Article  Google Scholar 

  48. WA Phelan, DC Wallace, KE Arpino, JR Neilson, KJ Livi, CR Seabourne, AJ Scott, TM McQueen, J Am Chem Soc. 135, 5372. https://doi.org/10.1021/ja4011767 (2013)

    Article  Google Scholar 

  49. M.A. Khan, M. Xia, S. Mutahir, T. Muhmood, W. Lei, F. Wang, Catal. Sci. Technol. 7, 3017–2026 (2017)

    Article  Google Scholar 

  50. W.A. Phelan, D.C. Wallace, K.E. Arpino et al., J. Am. Chem. Soc. 135, 5372 (2013)

    Article  Google Scholar 

  51. J. Guo, Y. Li, S. Zhu et al., RSC Adv. 2, 1356 (2012)

    Article  Google Scholar 

  52. A. Zada, Y. Qu, S. Ali et al., J. Hazard. Mater. 342, 715 (2018)

    Article  Google Scholar 

  53. P. Wang, J. Wang, X. Wang et al. (2013) Appl. Catal. B Environ. 132–133, 452–459

    Article  Google Scholar 

  54. M.A. Khan, S. Mutahir, F. Wang, W. Lei, M. Xia, Nanotechnology 29, 375605 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

All the research works in this group are financially supported by the National Natural Science Foundation of China (51672134, 51572127 and 51572130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingzhu Xia or Fengyun Wang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Khan, M.A., Xia, M. et al. Synthesis of RGO and g-C3N4 hybrid with WO3/Bi2WO6 to boost degradation of nitroguanidine under visible light irradiation. J Mater Sci: Mater Electron 30, 5503–5515 (2019). https://doi.org/10.1007/s10854-019-00844-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00844-w

Navigation