Skip to main content
Log in

Development of self-rectifying ZnO thin film resistive switching memory device using successive ionic layer adsorption and reaction method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present report, a simple and cost-effective successive ionic layer adsorption and reaction method is employed to develop self-rectifying ZnO thin film memory device. The nature of pinched hysteresis loop and frequency dependent I–V characteristics depicts that the developed device behaves like a memristive device. Moreover, significant pinched hysteresis loop at 1 MHz was observed which could be further exploited for the development of new class of high-frequency circuits by using ZnO memristive device. The observed analog memory with scan rate dependent synaptic weights behavior suggests that the ZnO memristive device is a potential candidate for the development of electronic synaptic devices for neuromorphic computing application. Furthermore, multilevel resistive switching with good memory window was obtained at 0.2 V read voltage. The developed device switched successfully in consecutive 10 k resistive switching cycles and can retain multilevel resistance states over 1000 s without any observable degradation in the resistance states. The insights drawn from electrical characterization indicates that the device charge and charge–magnetic flux relations depend upon the frequency of the applied signal. Furthermore, we have presented the criteria for differentiating the experimental device as a memristor or memristive device based on the nature of time domain charge and double valued charge–magnetic flux relation. The resistive switching effect of the present device is manifested due to the unified effect of the Ohmic and Schottky conduction mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. ‎Adv. Phys. 60(2), 145–227 (2011)

    Google Scholar 

  2. T.D. Dongale, K.P. Patil, S.B. Mullani, K.V. More, S.D. Delekar, P.S. Patil, P.K. Gaikwad, R.K. Kamat, Investigation of process parameter variation in the memristor-based resistive random access memory (RRAM): effect of device size variations. Mater. Sci. Semicond. Process. 35, 174–180 (2015)

    Article  CAS  Google Scholar 

  3. S. Jo, T. Chang, I. Ebong, B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  CAS  Google Scholar 

  4. X. Hu, S. Duan, L. Wang, X. Liao, Memristive crossbar array with applications in image processing. Sci. China Inf. Sci. 55(2), 461–472 (2012)

    Article  Google Scholar 

  5. Q. Xia, W. Robinett, M. Cumbie, N. Banerjee, T. Cardinali, J. Yang, W. Wu, X. Li, W. Tong, D. Strukov, G. Snider, Memristor—CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3645 (2009)

    Article  CAS  Google Scholar 

  6. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  7. L.O. Chua, S.M. Kang, Memristive devices and systems, Proc. IEEE 64(2), 209–223 (1976)

    Article  Google Scholar 

  8. T.D. Dongale, K.V. Khot, S.V. Mohite, N.K. Desai, S.S. Shinde, V.L. Patil, S.A. Vanalkar, A.V. Moholkar, K.Y. Rajpure, P.N. Bhosale, P.S. Patil, P.K. Gaikwad, R.K. Kamat, Effect of write voltage and frequency on the reliability aspects of memristor-based RRAM, Int. Nano Lett. 7(3), 209–216 (2017)

    Article  CAS  Google Scholar 

  9. K.H. Choi, M. Mustafa, K. Rahman, B.K. Jeong, Y.H. Doh, Cost-effective fabrication of memristive devices with ZnO thin film using printed electronics technologies. Appl. Phys. A 106(1), 165–170 (2012)

    Article  CAS  Google Scholar 

  10. T.D. Dongale, K.V. Khot, S.S. Mali, P.S. Patil, P.K. Gaikwad, R.K. Kamat, P.N. Bhosale, Development of Ag/ZnO/FTO thin film memristor using aqueous chemical route. Mater. Sci. Semicond. Process. 40, 523–526 (2015)

    Article  CAS  Google Scholar 

  11. X.D. Gao, X.M. Li, W.D. Yu, Synthesis and optical properties of ZnO nanocluster porous films deposited by modified SILAR method. Appl. Surf. Sci. 229(1), 275–281 (2004)

    Article  CAS  Google Scholar 

  12. P.S. Pawar, R.S. Tikke, V.B. Patil, N.B. Mullani, P.P. Waifalkar, K.V. Khot, A.M. Teli, A.D. Sheikh, T.D. Dongale, A low-cost copper oxide thin film memristive device based on successive ionic layer adsorption and reaction method. Mater. Sci. Semicond. Process. 71, 102–108 (2017)

    Article  CAS  Google Scholar 

  13. S. Li, F. Zeng, C. Chen, H. Liu, G. Tang, S. Gao, C. Song, Y. Lin, F. Pan, D. Guo, Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C 1(34), 5292–5298 (2013)

    Article  CAS  Google Scholar 

  14. T. Chang, S.H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011)

    Article  CAS  Google Scholar 

  15. Y.N. Joglekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661 (2009)

    Article  CAS  Google Scholar 

  16. N. Raghavan, Performance and reliability trade-offs for high-κ RRAM. Microelectron. Reliab. 54(9–10), 2253–2257 (2014)

    Article  Google Scholar 

  17. A. Fantini, L. Goux, R. Degraeve, D. Wouters, N. Raghavan, G. Kar, A. Belmonte, Y. Chen, B. Govoreanu, M. Jurczak, Intrinsic switching variability in HfO2 RRAM. In 5th IEEE International Memory Workshop (IMW) (2013), p. 30–33

  18. T.D. Dongale, K.P. Patil, P.K. Gaikwad, R.K. Kamat, Investigating conduction mechanism and frequency dependency of nanostructured memristor device. Mater. Sci. Semicond. Process. 38, 228–233 (2015)

    Article  CAS  Google Scholar 

  19. T. Driscoll, J. Quinn, S. Klein, H.T. Kim, B.J. Kim, Y.V. Pershin, M. Di Ventra, D.N. Basov, Memristive adaptive filters. Appl. Phys. Lett. 97(9), 093502 (2010)

    Article  Google Scholar 

  20. N. Du, Y. Shuai, W. Luo, C. Mayr, R. Schüffny, O.G. Schmidt, H. Schmidt, Practical guide for validated memristance measurements. Rev. Sci. Instrum. 84(2), 023903 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Shivaji University, Kolhapur under the ‘Research Initiation Scheme’ and by the MOTIE (Ministry of Trade, Industry & Energy) (No. 10053098) and KSRC (Korea Semiconductor Research Consortium) support program for the development of the future semiconductor device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tukaram D. Dongale.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongle, V.S., Dongare, A.A., Mullani, N.B. et al. Development of self-rectifying ZnO thin film resistive switching memory device using successive ionic layer adsorption and reaction method. J Mater Sci: Mater Electron 29, 18733–18741 (2018). https://doi.org/10.1007/s10854-018-9997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9997-9

Navigation