Skip to main content
Log in

Enhanced electrical and magnetic properties in BZT/NFO multiferroic composites derived by MARH

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic materials comprising of ferroelectric (FE) and ferromagnetic (FM) composites exhibits added functionalities significant from scientific and technological standouts. But these FE/FM composites are very sensitive to processing parameters, sintering, and chemical modifications. In present work FE/FM composites (1 − x)(Ba Zr0.15, Ti0.85)O3–xNiFe2O4 (BZT–NFO) was sintered by microwave assisted radiant heating (MARH) technique, which has evolved as a hybrid sintering technique, where radiant and microwave sintering methods are coupled together, in such a way that, when conventional radiant heating is applied for sintering, simultaneously different (0%, 15%, 30% and 50%) Microwave power (Mw) percentages are applied in a precise and controlled manner. The present study dwells on the role of different Mw power applied during sintering on the structure, dielectric, ferroelectric and magnetic properties of (1 − x) (Ba Zr0.15, Ti0.85) O3–xNiFe2O4 (BZT–NFO) composites. Structural phase analysis carried out by X-ray diffraction displays Bragg peaks corresponding to both perovskite and ferrite phases. Since the compositional variation of ferrite remains as low as 1% for all the compositions, the overall crystal phase is dominated by perovskite phase which was further confirmed by room temperature Raman spectra. No intermediate phase or structural transitions were observed for all the compounds. Dielectric permittivity increases by 35% for the sample sintered with 15% Mw power, while leakage current decreases by an order of magnitude. At higher temperature, mobility due to oxygen vacancies/or defects present in the samples dominates the conduction mechanism. Magnetic hysteresis curve at room temperature suggests the soft magnetic nature exhibiting ferromagnetic behavior for all the samples. Sample sintered with 15 Mw power exhibits higher saturation magnetization (Ms).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)

    Article  CAS  Google Scholar 

  2. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  3. M.N.- Ul-Haq, V.V. Shvartsman, H. Trivedi, S. Salamon, S. Webers, H. Wende, U. Hagemann, J. Schroder, D.C. Lupascu, Strong converse magnetoelectric effect in (Ba, Ca) (Zr, Ti)O3–NiFe2O4 multiferroic: a relationship between phase-connectivity and interface coupling. Acta Mater. 144, 305 (2018)

    Article  Google Scholar 

  4. B. Sun, P. Han, W. Zhao, Y. Liu, P. Chen, White-light-controlled magnetic and ferroelectric properties in multiferroic BiFeO3 square nanosheets. J. Phys. Chem. C 118, 18814 (2014)

    Article  CAS  Google Scholar 

  5. A. Marzouki, H. Harzali, V. Loyau, P. Gemeiner, K. Zehani, B. Dkhil, L. Bessais, A. Megriche, Large magnetoelectric response and its origin in bulk Co-doped BiFeO3 synthesized by a stirred hydrothermal process. Acta Mater. 145, 316 (2018)

    Article  CAS  Google Scholar 

  6. J. Rani, V.K. Kushwaha, J. Kolte, Structural, dielectric and magnetoelectric studies of [0.5 Ba (Zr0.2Ti0.8) O3–0.5(Ba0.7Ca0.3)TiO3]-Ni0.8Zn0.2Fe2O4 multiferroic composites. J. Alloys Compd. 696, 266 (2017)

    Article  CAS  Google Scholar 

  7. Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, J. Yang, A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4–BaTiO3 multiferroic composites. J. Mater. Sci. Mater. Electron. 24(6), 1900 (2014)

    Article  Google Scholar 

  8. N.S. Negi, R. Kumar, H. Sharma, J. Shah, R.K. Kotnala, Structural, multiferroic, dielectric and magnetoelectric properties of (1-x)Ba0.85Ca0.15Ti0.90Zr0.10O3-(x)CoFe2O4 lead-free composites. J. Magn. Magn. Mater. 456, 292 (2018)

    Article  CAS  Google Scholar 

  9. C. Harnagea, L. Mitoseriu, V. Buscaglia, I. Pallecchi, P. Nanni, Magnetic and ferroelectric domainstructures in BaTiO3–(Ni0.5Zn0.5)Fe2O4 multiferroic ceramics. J. Eur. Ceram. Soc. 27, 3947 (2007)

    Article  CAS  Google Scholar 

  10. H. Yang, H. Wang, L. He, L. Shui, X. Yao, Polarization relaxation mechanism of Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with giant dielectric constant and high permeability. J. Appl. Phys. 108, 045001 (2010)

    Google Scholar 

  11. A. Singh, V. Singh, K.K. Bamzai, Structural and magnetic studies on (x) PbTiO3–(1–x)SrFe12O19 composite multiferroic. Mater. Chem. Phys. 155, 92 (2015)

    Article  CAS  Google Scholar 

  12. A. Siddaramanna, V. Kothai, C. Srivastava, R. Ranjan, Stabilization of metastable tetragonal phase in a rhombohedral magnetoelectric multiferroic BiFeO3–PbTiO3. J. Phys. D: Appl. Phys. 47, 045004 (2014)

    Article  Google Scholar 

  13. V.R. Reddy, S.K. Upadhyay, A. Gupta, A.M. Awasthi, S. Hussain, Enhanced dielectric and ferroelectric properties of BaTiO3 ceramics prepared by microwave assisted radiant hybrid sintering. Ceram. Int. 40, 8333 (2014)

    Article  CAS  Google Scholar 

  14. J.D.S. Guerra, S. Betal, M. Pal, J.E. Garcia, A.J.A. Oliveira, J.C.M. Peko, A.C. Hernandes, R. Guo, A.S. Bhalla, Magnetoelectric response in (1–x)PbZr0.65Ti0.35O3–xBaFe12O19 multiferroic ceramic composites. J. Am. Ceram. Soc. 98, 1542 (2015)

    Article  CAS  Google Scholar 

  15. R. Chauhan, R.C. Srivastava, Various properties of 0.6 BaTiO3–0.4 Ni0.5Zr0.5Fe2O4 multiferroic composite ceramics. Pramana—J. Phys. 87, 45 (2016)

    Article  Google Scholar 

  16. J.F. Scott, Application of modern ferroelectrics. Science 315, 954 (2007)

    Article  CAS  Google Scholar 

  17. M.M. Kumar, K. Srinivas, S.V. Suryanarayana, Relaxor behavior in BaTiO3. Appl. Phys. Lett. 76(10), 1330 (2000)

    Article  Google Scholar 

  18. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, High piezoelectric d33 coefficient of lead free (Ba0.93Ca0.07)(Ti0.95Zr0.05)O3 ceramics sintered at optimal temperature. Mat. Sci. Eng. B 176, 65 (2011)

    Article  CAS  Google Scholar 

  19. A. Singh, K. Shamim, S. Sharma, R. Rai, Effect of different microwave power applied during microwave assisted radiant heating on the structure, dielectric and electrical properties of Ba0.8Ca0.2TiO3 ceramics. J. Mater. Sci. Mater. Electron. 29, 8158 (2018)

    Article  CAS  Google Scholar 

  20. P. Jarupoom, K. Pengpat, G. Rujijanagul, Enhanced piezoelectric properties and lowered sintering temperature of Ba(Zr0.07Ti0.93)O3 by B2O3 addition. Curr. Appl. Phys. 10, 557 (2010)

    Article  Google Scholar 

  21. W. Liu, X. Ren, Large piezoelectric effect in Non-Pb ceramics. Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  22. D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao, X. Ren, Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3–50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary. J. Appl. Phys. 109, 054110 (2011)

    Article  Google Scholar 

  23. D. Writz, M. Fermigler, One dimensional patterns and wavelength selection in magnetic fluids. Phys. Rev. Lett. 72, 2294 (1994)

    Article  Google Scholar 

  24. R.H. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359 (1994)

    Article  Google Scholar 

  25. P. Sivakumar, R. Ramsesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchevlan, Synthesis and characterization of NiF2O4 nano particles and nano rods. J. Alloys Compd. 53, 6 (2013)

    Article  Google Scholar 

  26. R. Dehghan, S.S. Ebrahimi, A. Badiei, Investigation of effective parameters on the synthesis of Ni-ferrite nano crystalline powders by co-precipitation method. J. Non-Cryst. Solids 354, 186 (2008)

    Article  Google Scholar 

  27. M. Kumar, S.K. Rout, S. Parida, G.P. Singh, S.K. Sharma, S.K. Pardhan, I. Wonkim, Structural optical and dielectric studies of NixZn1–xFe2O4 prepared by auto combustion route. Phys. B 407, 935 (2012)

    Article  Google Scholar 

  28. M. Rashid, O. Faud, Synthesis and characterization of nano-seized nickel ferrites from fly ash forcatalytic oxidation of Co. Mater. Chem. Phys. 94, 365 (2005)

    Article  Google Scholar 

  29. I. Coondoo, N. Panwar, H. Amorin, V.E. Ramana, M. Alguero, A. Kholkin, Enhanced piezoelectric properties of praseodymium-modified lead-free (Ba0.85Ca0.15) (Ti0.90Zr0.10)O3 ceramics. J. Am. Ceram. Soc. 98, 3127 (2015)

    Article  CAS  Google Scholar 

  30. S. Priya, S.C. Yang, D. Maurya, Y. Yan, in Composite Magnetoelectrics, ed. by G. Srinivasan, S. Priya, N.X. Sun. Recent advances in piezoelectric and magnetoelectric materials phenomena (Woodhead Publishing, Sawston, 2015), p. 103

    Chapter  Google Scholar 

  31. L. Hao, D. Zhou, Q. Fu, Y. Hu, Multiferroic properties of multi-layered BaTiO3-CoFe2O4 composites via tape casing method. J. Mater. Sci. 48, 178 (2013)

    Article  CAS  Google Scholar 

  32. S. Ke, H. Fan, H. Hunang, H.L.W. Chan, S. Yu, Dielectric, ferroelectric and grain growth of CaxBa1–xNb2O6 ceramics with tungsten bronze structure. J. Appl. Phys. 104, 01 (2008)

    Google Scholar 

  33. S.W. da Dilva, K. Nagagoi, M.S. Silva, A. Franco jr, V.K. Garg, A.C. Oliveria, P.C. Morais, Raman study of cations’ distribution in Zn xMg1–xFe2O4, nanoparticles. J. Nanopart. Res. 14, 798 (2012)

    Article  Google Scholar 

  34. X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, S. Buddhudu, A ferroelectric ferromagnetic composite material with significant permeability and permittivity. Adv. Funct. Mater. 14, 920 (2004)

    Article  CAS  Google Scholar 

  35. J.-P. Zhou, Y.-X. Zhang, Q. Liu, P. Liu, Magnetoelectric effects on ferromagnetic and ferroelectric phase transitions in multiferroic materials. Acta Mater. 76, 355–370 (2014)

    Article  CAS  Google Scholar 

  36. C.X. Li, B. Yang, S.T. Zhang, D.Q. Liu, R. Zhang, Y. Sun, W.W. Cao, Effects of Mn doping on multiferroic and magneto-capacitive properties of 0.33Ba0.70Ca0.30TiO3–0.67BiFeO3 diphasic ceramics. J. Alloys Compd. 590, 346 (2014)

    Article  CAS  Google Scholar 

  37. S. Liu, S. Xue, S. Xiu, B. Shen, J. Zhai, Surface modified Ba (Zr0.3 Ti0.7)O3 nanofiber by polyvinylpyrrolidone fillers for poly (vinylidene fluoride) composite with enhanced dielectric constant and energy storage density. Sci. Rep. 6, 26198 (2016)

    Article  CAS  Google Scholar 

  38. A. Shukla, R.N.P. Choudhary, A.K. Thakur, Defects structure and magnetic moments in β-phases of CoAl and CoGa. J. Phys. Chem. Sol. 70, 1401 (2009)

    Article  CAS  Google Scholar 

  39. A.K. Jonsher, Dielectric Relaxations in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  40. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  41. M. Pollack, T.H. Geballe, Low-frequency conductivity due to hopping processes in Silicon. Phys. Rev. B 122, 1742 (1961)

    Article  Google Scholar 

  42. H. Nathani, S. Gubbala, R.D.K. Mishra, Magnetic behavior of nano-crystalline nickel ferrite: part-1, the effect of surface roughness. Mater. Sci. Eng. B 121, 126 (2015)

    Article  Google Scholar 

  43. C.N. Chinnaswamy, A. Narayanswamy, N. Ponpandian, K. Chattopadhayay, H. Gueraut, J.M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J. Phys. Condens. Mater. 13(5), 1179 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Dr V R Reddy, Dr V Sathe and Dr Mukul Gupta for MARH sintering, ferroelectric, X-ray Diffraction and Raman spectroscopic measurements of UGC-DAE Consortium for Scientific Research Indore Centre, Indore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Shamim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Shamim, K., Sharma, S. et al. Enhanced electrical and magnetic properties in BZT/NFO multiferroic composites derived by MARH. J Mater Sci: Mater Electron 29, 18221–18230 (2018). https://doi.org/10.1007/s10854-018-9935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9935-x

Navigation