Skip to main content
Log in

Required theoretical and experimental physical characteristics of tris[4-(diethylamino)phenyl] amine organic material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In here, we investigated the required theoretical and experimental physical characteristics such as potential energy surface scan, optimized structure, vibrational spectra, electronic band structure, molecular electrostatic potential surface, optical and optoelectronic behaviors of the tris[4-(diethylamino)phenyl] amine (TDAPA) for different solvents (DMF and chloroform) and techniques (experimental and theoretical). We obtained the significant, interesting, same and different results for them. We obtained the refractive indices of the TDAPA for various conditions. The TDAPA exhibits a normal dispersion behavior in visible region. TDAPA organic material is suitable for optoelectronic devices and applications such as metal–organic semiconductor diodes due to the appropriate properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Reineke, F. Linder, G. Schwartz, N. Seidler, K. Walazer, B. Lüssem, K. Leo, White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234 (2009)

    Article  Google Scholar 

  2. F. So, J. Kido, P. Burrows, Organic light-emitting devices for solid-state lighting. MRS Bull 33, 663 (2008)

    Article  Google Scholar 

  3. T. Nakayama, K. Hiyama, K. Furukawa, H. Ohtani, Development of phosphorescent white OLED with extremely high power efficiency and long lifetime. J. SID 16(2), 231–236 (2008). https://doi.org/10.1889/1.2841855

    Google Scholar 

  4. J. Chen, F. Zhao, D. Ma, Hybrid white OLEDs with fluorophors and phosphors. Mater. Today 17, 175 (2014)

    Article  Google Scholar 

  5. J. Lee, W.J. Sung, C.W. Joo, H. Cho, N.S. Cho, G.-W. Lee, D.-H. Hwang, J.-I. Lee, Simplified bilayer white phosphorescent organic light-emitting diodes. ETRIJ 38, 260 (2016)

    Article  Google Scholar 

  6. F. Wudl, G. Srdanov, US Patent 51,891,36A, 1993

  7. A. Ltaief, A. Bouazizi, J. Davenas, R.B. Chaabane, H.B. Ouada, Electrical and optical properties of thin films based on MEH-PPV/fullerene blends. Synth. Met. 147, 261 (2004)

    Article  Google Scholar 

  8. B. Geffroy, P. Roy, C. Prat, Review organic light-emitting diode (OLED) technology:materials, devices and display technologies. Polym. Int. 55, 572–582 (2006)

    Article  Google Scholar 

  9. A. Cravino, P. Leriche, O. Alévêque, S. Roquet, J. Roncali, Light-emitting organic solar cells based on a 3d conjugated system with internal charge transfer. Adv. Mater. 18, 3033–3037 (2006)

    Article  Google Scholar 

  10. Y. Shirota, Photo- and electroactive amorphous molecular materials molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem. 15, 75–93 (2005)

    Article  Google Scholar 

  11. M.M. Stylianakis, J.A. Mikroyannidis, Q.F. Dong, J.N. Pei, Z.Y. Liu, W.J. Tian, Synthesis, photophysical and photovoltaic properties of star-shaped molecules with triphenylamine as core and phenylethenylthiophene or dithienylethylene as arms. Sol. Energy Mater. Sol. Cells 93, 1952–1958 (2009)

    Article  Google Scholar 

  12. M. Zhang, Z. Wu, Q. Wang, Q. Song, Y. Ding, Synthesis and properties of a new [60] fullerene-donor system containing dicyanovinyl groups. Mater. Lett. 64, 2244–2246 (2010)

    Article  Google Scholar 

  13. Y.J. Shirota, Organic materials for electronic and optoelectronic devices. Mater. Chem. 10(1), 1–25 (2000)

    Article  Google Scholar 

  14. K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007)

    Article  Google Scholar 

  15. H.P. Zeng, T.T. Wang, S.D. Sandanayaka, Y. Araki, O.J. Ito, Photoinduced charge separation and charge recombination in [60]fullerene-ethylcarbazole and [60]fullerene-triphenylamines in polar solvents. J. Phys. Chem. A 109, 4713–4720 (2005)

    Article  Google Scholar 

  16. P. Drzaic, D. Hecht, M. O’Connell, G. Irvin, US Patent 2009/0169819 A1, 2009

  17. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox (2009) Gaussian 09, revision A.02. Gaussian Inc, Wallingford, CT

    Google Scholar 

  18. E.B. Sas, M. Kurt, M. Can, N. Horzum, A. Atac, Spectroscopic studies on 9H-Carbazole-9-(4-phenyl) boronic acid pinacol ester by DFT method. J. Mol. Struct. 1118, 124–138 (2016)

    Article  Google Scholar 

  19. B. Gündüz, Effects of molarity and solvents on the optical properties of the solutions of tris[4-(5-dicyanomethylidenemethyl-2-thienyl)phenyl]amine (TDCV-TPA) and structural properties of its film. Opt. Mater. 36(2), 425–436 (2013)

    Article  Google Scholar 

  20. C. Orek, B. Gündüz, O. Kaygili, N. Bulut, Electronic, optical, and spectroscopic analysis of TBADN organic semiconductor: experiment and theory. Chem. Phys. Lett. 678, 130–138 (2017)

    Article  Google Scholar 

  21. M. Kurban, B. Gündüz, Physical and optical properties of DCJTB dye for OLED display applications: experimental and theoretical investigation. J. Mol. Struct. 1137, 403–411 (2017)

    Article  Google Scholar 

  22. S.B. Aziz, O. Gh.Abdullah, M.A. Rasheed, A novel polymer composite with a small optical band gap: new approaches for photonics and optoelectronics. J. Appl. Polym. Sci. 134, 44847 (2017)

    Google Scholar 

  23. M.M. El-Nahass, A.M. Farid, A.A. Atta, Structural and optical properties of Tris(8-hydroxyquinoline) aluminum (III)(Alq3) thermal evaporated thin films. J. Alloy Compd. 507, 112–119 (2010)

    Article  Google Scholar 

  24. M. Cabuk, B. Gündüz, Controlling the optical properties of polyaniline doped by boric acid particles by changing their doping agent and initiator concentration. Appl. Surf. Sci. 424, 345–351 (2017)

    Article  Google Scholar 

  25. R.H. French, J.M. R-Parada, M.K. Yang, R.A. Derryberry, N.T. Pfeiffenberger, Optical properties of polymeric materials for concentrator photovoltaic systems. Sol. Energy Mater. Sol. Cells 95, 2077–2086 (2011)

    Article  Google Scholar 

  26. S.B. Aziz, M.A. Rasheed, A.M. Hussein, H.M. Ahmed, Fabrication of polymer blend composites based on [PVA-PVP](1–x):(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: structural and optical properties. Mater. Sci. Semicond. Process. 71, 197–203 (2017)

    Article  Google Scholar 

  27. S.K. Tripathy, Refractive indices of semiconductors from energy gaps. Opt. Mater. 46, 240–246 (2015)

    Article  Google Scholar 

  28. M.S.S. Rahman, M.K. Alam, Effect of angle of incidence on the performance of bulk heterojunction organic solar cells: a unified optoelectronic analytical framework. AIP Adv. (2017). https://doi.org/10.1063/1.4985049.

    Google Scholar 

  29. G. Dennler, K. Forberich, M.C. Scharber, C.J. Brabec, I. Tomiˇs, K. Hingerl, T. Fromherz, Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells. J. Appl. Phys. 102, 054516 (2007)

    Article  Google Scholar 

  30. A. Meyer, H. Ade, The effect of angle of incidence on the optical field distribution within thin film organic solar cells. J. Appl. Phys. 106, 113101 (2009)

    Article  Google Scholar 

  31. S. Lee, I. Jeong, H.P. Kim, S.Y. Hwang, T.J. Kim, Y.D. Kim, J. Jang, J. Kim, Effect of incidence angle and polarization on the optimized layer structure of organic solar cells. Sol. Energy Mater. Sol. Cells 118, 9 (2013)

    Article  Google Scholar 

  32. F. Abelès (ed.), Optical Properties of Solids (North-Holland, Amsterdam, 1972)

    Google Scholar 

  33. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information, (Kluwer Academic Publishers, London, 1999)

    Book  Google Scholar 

  34. B. Gündüz, Optical properties of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents. Polym. Bull. 72(12), 3241–3267 (2015)

    Article  Google Scholar 

  35. E.B. Sas, M. Cevik, M. Kurt, Experimental and theoretical analysis of 2-amino 1-methyl benzimidazole molecule based on DFT. J. Mol. Struct. 1149, 882–892 (2017)

    Article  Google Scholar 

  36. H. Ulla, M.R. Kiran, B. Garudachari, T.N. Ahipa, K. Tarafder, A.V. Adhikari, G. Umesh, M.N. Satyanarayan, Blue emitting 1,8-naphthalimides with electron transport properties for organic light emitting diode applications. J. Mol. Struct. 1143, 344–354 (2017)

    Article  Google Scholar 

  37. E. Scrocco, J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Adv. Quantum Chem. 11, 115–121 (1978)

    Article  Google Scholar 

  38. C. Muñoz-Caro, A. Niño, M.L. Sement, J.M. Leal, S. Ibeas, Modeling of protonation processes in acetohydroxamic acid. J. Org. Chem. 65, 405–410 (2000)

    Article  Google Scholar 

  39. P. Politzer, K.C. Daiker, Chap. 6. Models for chemical reactivitiy, ed. by D.M. Deb. The Force Concept In Chemistry, (Van Nostrand Reinhold Co., New York, 1981)

    Google Scholar 

  40. P. Politzer, P.R. Laurence, K. Jayasuriya, J. McKinney, Structure activity correlation in mechanism studies and predictive toxicology. Spec. Issue Environ. Health Perspect. 61, 191 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Ahi Evran University Scientific Project Unit (BAP) with, Project No: PYO–FEN.4001.15.012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Babur Sas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1143 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanış, E., Babur Sas, E., Gündüz, B. et al. Required theoretical and experimental physical characteristics of tris[4-(diethylamino)phenyl] amine organic material. J Mater Sci: Mater Electron 29, 16111–16119 (2018). https://doi.org/10.1007/s10854-018-9700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9700-1

Navigation