Skip to main content
Log in

Microstructure, optical and electrical properties of Bi and Ba co-doped K0.52Na0.48NbO3 transparent ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new Bi and Ba co-doped K0.52Na0.48NbO3 transparent ceramics were synthesized by using solid-state reaction method. Their microstructure, optical and electrical properties were studied. The results show that the obtained compact ceramic has a perovskite polycrystalline structure with cubic phase. Refinement on the crystalline structure shows that the Bi and Ba co-doping results in forming an interstitial solid solution in K0.52Na0.48NbO3 ceramic. An appropriate amount of Bi and Ba co-doping is helpful for improving the transparency and densification of the ceramics. The most transparency of the samples reaches a high value of about 60% in the near-IR region. The dielectric constant–temperature spectrum shows that with increasing the Bi and Ba content the dielectric constant–temperature transition peaks become to be more flat. The complex impedance plots exhibit two impedance semicircles identified within the frequency range of 1 kHz–1 MHz for all samples, which is explained by the grain and grain boundary effects. The presence of non-Debye type of relaxation has been observed by a complex impedance analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Shirane, R. Newnham, R. Pepinsky, Phys. Rev. 96, 581 (1954)

    Article  Google Scholar 

  2. D.E. Harrison, G. Shirane, J. Electrochem. Soc. 108, 788 (1961)

    Article  Google Scholar 

  3. R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209 (2010)

    Article  Google Scholar 

  4. M. Jiang, X. Liu, G. Chen, Scr. Mater. 60, 909 (2009)

    Article  Google Scholar 

  5. M.H. Jiang, G.Q. Zhao, Z.F. Gu, G. Cheng, X.Y. Liu, L. Li, J. Mater. Sci.: Mater. Electron. 26, 9366 (2015)

    Google Scholar 

  6. J. Tellier, B. Malic, B. Dkhil, D. Jenko, J. Cilensek, M. Kosec, Solid State Sci. 11, 320 (2009)

    Article  Google Scholar 

  7. G.H. Haertling, C.E. Land, J. Am. Ceram. Soc. 54, 1 (2010)

    Article  Google Scholar 

  8. A. Sternberg, Ferroelectrics 91, 53 (1989)

    Article  Google Scholar 

  9. H. Jiang, Y.K. Zou, Q. Chen, K.K. Li, R. Zhang, Y.P. Wang, SPIE 5644, 380 (2005)

    Google Scholar 

  10. F. Li, K.W. Kwok, J. Eur. Ceram. Soc. 33, 123 (2013)

    Article  Google Scholar 

  11. K. Li, F.L. Li, Y. Wang, K.W. Kwok, H.L.W. Chan, Mater. Chem. Phys. 31, 1 (2011)

    Article  Google Scholar 

  12. K.W. Kwok, F. Li, D. Lin, Funct. Mater. Lett. 04, 237 (2011)

    Article  Google Scholar 

  13. R.S. Silva, L.M. Jesus, T.C. Oliveira, D.V. Sampaio, J.C.A. Santos, A.C. Hernandes, J. Eur. Ceram. Soc. 36, 4023 (2016)

    Article  Google Scholar 

  14. R. Wei, G. Li, J. Zeng, J. Bian, L.S. Kamzina, H. Zeng, J. Am. Ceram. Soc. 93, 2128 (2010)

    Article  Google Scholar 

  15. Y.P. Zhang, S.H. Lee, K.R. Reddy, A.L. Gopalan, K.P. Lee, J. Appl. Polym. Sci. 104, 2743 (2007)

    Article  Google Scholar 

  16. K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1 (2015)

    Article  Google Scholar 

  17. W. Ge, Y. Zhang, J. Zhang, C.P. Devreugd, J. Li, D. Viehland, J. Appl. Phys. 111, 84 (2012)

    Google Scholar 

  18. D. Kobor, B. Guiffard, L. Lebrun, A. Hajjaji, D. Guyomar, J. Phys. D 40, 2920 (2007)

    Article  Google Scholar 

  19. M. Jiang, C.A. Randall, H. Guo, G. Rao, R. Tu, Z. Gu, J. Am. Ceram. Soc. 98, 2988 (2015)

    Article  Google Scholar 

  20. J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, Inc., New York, 2005), pp. 1–26

    Book  Google Scholar 

  21. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

  22. J. Suchanicz, Mater. Sci. Eng. B 55, 114 (1998)

    Article  Google Scholar 

  23. D.C. Sinclair, A.R. West, Phys. Rev. B 39, 13486 (1989)

    Article  Google Scholar 

  24. A. Niemer, R. Pankrath, K. Betzler, M. Burianek, M. Muehlberg, J. Phys.: Condens. Mater. 2, 80 (2012)

    Google Scholar 

  25. X.L. Han, Q. Zhu, Y. Liu, Q. Xiao, F.L. Jiang, R. Li, Spectrochim. Acta A 74, 781 (2009)

    Article  Google Scholar 

  26. A. Srivastava, A. Garg, F.D. Morrison, J. Appl. Phys. 105, 054103 (2009)

    Article  Google Scholar 

  27. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387 (2013)

    Article  Google Scholar 

  28. Q.Z. Chai, X. Zhao, X. Chao, Z. Yang, RSC Adv. 7, 28428 (2017)

    Article  Google Scholar 

  29. L.C. Wu, X.M. Lin, Y. Huang, J. Li, J. Alloys Compd. 706, 156 (2017)

    Article  Google Scholar 

  30. Z. Yang, X. Zhang, D. Yang, B. Yang, X. Chao, L. Wei, J. Am. Ceram. Soc. 99, 2055 (2016)

    Article  Google Scholar 

  31. Z.M. Geng, K. Li, D. Shi, L. Zhang, X. Shi, J. Mater. Sci.: Mater. Electron. 26, 6769 (2015)

    Google Scholar 

  32. Z.M. Geng, L. Kun, D.L. Shi, X.Y. Shi, H.T. Huang, J. Inorg. Mater. 29, 1265 (2014)

    Article  Google Scholar 

  33. P. Yongsiri, S. Eitssayeam, U. Inthata, G. Rujijanagul, S. Sirisoonthorn, T. Tunkasiri, Ferroelectrics 416, 144 (2011)

    Article  Google Scholar 

  34. X.S. Zhang, D. Yang, Z. Yang, X.M. Zhao, Q.Z. Chai, X.L. Chao, L.L. Wei, Z.P. Yang, Ceram. Int. 42, 17963 (2016)

    Article  Google Scholar 

  35. Q.Z. Chai, D. Yang, X.M. Zhao, X. Chao, Z.P. Yang, J. Am. Ceram. Soc. (2018). https://doi.org/10.1111/jace.15392

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge technical assistance from Mr. Lin Li, Mr. Yusong Du and others at Guilin University of Electronic Technology. This work was supported by National Natural Science Foundation of China (61571142, 51562004, 51102056), Guangxi Natural Science Outstanding Youth Foundation (2016GXNSFFA380007), Guangxi Natural Science Foundation (2015GXNSFAA139276, 2016GXNSFGA380001), Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology, Project No. 171004-Z) and Innovation Project of GUET Graduate Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Q., Jiang, M., Han, S. et al. Microstructure, optical and electrical properties of Bi and Ba co-doped K0.52Na0.48NbO3 transparent ceramics. J Mater Sci: Mater Electron 29, 13407–13417 (2018). https://doi.org/10.1007/s10854-018-9466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9466-5

Navigation