Skip to main content
Log in

A smart LPG sensor based on chemo-bio synthesized MgO nanostructure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work reports the synthesis of magnesium oxide nanoparticles (MgO NP’s) using A. barbadensis Mill (aloe vera) as the stabilizer by green synthesis approach as well as solution-combustion method. The morphological, structural and optical properties of synthesized MgO NP’s were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The characterization results show the fibrous shaped porous structure of synthesized MgO NP’s with size range of 2–25 nm. The as-synthesized MgO NP’s were subjected to sensing of liquefied petroleum gas (LPG) having different concentration ranges (400–1000 ppm) and different operating temperatures along with dynamic characteristics. The sensor exhibits high selectivity and sensitivity towards LPG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Chen, H. Kan, Environ. Health Prev. Med. 13, 94–101 (2008)

    Article  Google Scholar 

  2. B. Brunekreef, S.T. Holgate, Lancet 360, 1233 (2002)

    Article  Google Scholar 

  3. A. D’Sa, K.V.N. Murthy, Energy Sustain. Dev. 8, 91 (2004)

    Article  Google Scholar 

  4. B. Ashok, S. Denis Ashok, C. Ramesh Kumar, Alexandria Eng. J. 54, 105 (2015)

    Article  Google Scholar 

  5. J. Stawczyk, J. Hazard. Mater. 96, 189 (2003)

    Article  Google Scholar 

  6. D.R. Miller, S.A. Akbar, P.A. Morris, Sensors Actuators, B Chem. 204, 250 (2014)

    Article  Google Scholar 

  7. R.L. Vander Wal, G.W. Hunter, J.C. Xu, M.J. Kulis, G.M. Berger, T.M. Ticich, Sensors Actuators B Chem. 138, 113 (2009)

    Article  Google Scholar 

  8. S.S. Hosseini, Y. Li, T.-S. Chung, Y. Liu, J. Membr. Sci. 302, 207 (2007)

    Article  Google Scholar 

  9. C.-H. Kao, C.L. Chang, W.M. Su, Y.T. Chen, C.C. Lu, Y.S. Lee, C.H. Hong, C.-Y. Lin, H. Chen, Sci. Rep. 7, 7185 (2017)

    Article  Google Scholar 

  10. Z. Yunusa, M.N. Hamidon, A. Kaiser, Z. Awang, Sensors Transducers 168, 61 (2014)

    Google Scholar 

  11. N. Barsan, U. Weimar, J. Electroceram 7, 143 (2001)

    Article  Google Scholar 

  12. G. Sberveglieri, Sensors Actuators B. Chem. 23, 103 (1995)

    Article  Google Scholar 

  13. B.C. Yadav, A. Yadav, T. Shukla, S. Singh, Sensor Lett. 7, 1119 (2009)

    Article  Google Scholar 

  14. A.M. More, J.L. Gunjakar, C.D. Lokhande, Sensors Actuators, B Chem. 129, 671 (2008)

    Article  Google Scholar 

  15. W. ŁUzny, E. Bańka, Macromolecules 33, 425 (2000)

    Article  Google Scholar 

  16. H. Damm, P. Adriaensens, C. De Dobbelaere, B. Capon, K. Elen, J. Drijkoningen, B. Conings, J.V. Manca, J.D. Haen, C. Detavernier, P.C.M.M. Magusin, J. Hadermann, A. Hardy, M.K. Van Bael, Chem. Mater. 26, 5839 (2014)

    Article  Google Scholar 

  17. Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, J.-H. Liu, Sensors 12, 2610 (2012)

    Article  Google Scholar 

  18. M.A. Kozhushner, L.I. Trakhtenberg, V.L. Bodneva, T.V. Belisheva, A.C. Landerville, I.I. Oleynik, J. Phys. Chem. C 118, 11440 (2014)

    Article  Google Scholar 

  19. F. Li, J. Ran, M. Jaroniec, S.Z. Qiao, Nanoscale 7, 17590 (2015)

    Article  Google Scholar 

  20. M. Kumar, A. Mehta, A. Mishra, J. Singh, M. Rawat, S. Basu, Mater. Lett. 215, 121 (2018)

    Article  Google Scholar 

  21. P.C. Nagajyothi, T.V.M. Sreekanth, in Green Processes for Nanotechnology (2015), pp. 99–117

  22. V.R. Orante-Barrn, L.C. Oliveira, J.B. Kelly, E.D. Milliken, G. Denis, L.G. Jacobsohn, J. Puckette, E.G. Yukihara, J. Lumin. 131, 1058 (2011)

    Article  Google Scholar 

  23. K. Ganapathi Rao, C. Ashok, K. Venkateswara Rao, C. Shilpa Chakra, Int. J. Sci. Res. Impact Factor 2319 (2013)

  24. S. Balamurugan, L. Ashna, P. Parthiban, J. Nanotechnol. (2014). https://doi.org/10.1155/2014/841803

    Google Scholar 

  25. S. Tie, S. Zhang, Int. J. Mod. Phys. B 31, 1744083 (2017)

    Article  Google Scholar 

  26. L.V. Moskaleva, T. Weiss, T. Klüner, M. Bäumer, J. Phys. Chem. C 119, 9215 (2015)

    Article  Google Scholar 

  27. H. Kumar, R. Rani, Int. Lett. Chem. Phys. Astron. 19, 26 (2013)

    Article  Google Scholar 

  28. O.K. Tan, W. Cao, Y. Hu, W. Zhu, Ceram. Int. 30, 1127–1133 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Venkateswara Rao or Mohit Rawat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Singh, J., Rawat, R. et al. A smart LPG sensor based on chemo-bio synthesized MgO nanostructure. J Mater Sci: Mater Electron 29, 11679–11687 (2018). https://doi.org/10.1007/s10854-018-9266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9266-y