Skip to main content
Log in

Manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode as a sensitive miniaturized pH sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

pH monitoring in micro volume samples is required for environmental and clinical analysis. Low cost, miniaturized and stable metal oxide based pH sensors could be a suitable alternative to glass electrodes. In this study, a sensitive potentiometric solid state pH sensor based on manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode (MnO2/GPLE) was reported. The prepared MnO2/GPLE was carefully characterized by SEM, XRD and electrochemical techniques. To miniaturize the prepared pH sensor, a stainless steel 304 needle was used as a reference electrode. Selectivity, response time, stability and reproducibility of the miniaturized pH sensor were studied and compared with conventional glass pH electrode. According to experimental results, a near-Nernstian slope of − 57.051 mV/pH and linearity over the pH range of 1.5–12.5 were obtained for the developed MnO2/GPLE pH sensor. The prepared sensor represented high ion selectivity to mono-valence and multi-valence ions with \(- \log K_{{{\text{A}},{\text{B}}}}^{{{\text{Pot}}}}\) values around 6.49. A fast response time of 20 s in acidic medium and 60 s in alkaline medium, long-term stability and reproducibility in 2 months, the simplicity of fabrication, low cost and accuracy makes this sensor as a suitable choice for rapid pH recording in micro volume samples. The MnO2/GPLE pH sensor was successfully used for the pH monitoring of human tear, human blood, saliva, apple juice, lemon juice, milk, and vinegar samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Dole, J. Chem. Educ. 57, 134 (1980)

    Article  Google Scholar 

  2. C. Hegarty, S. Kirkwood, M.F. Cardosi, C.L. Lawrence, C.M. Taylor, R.B. Smith et al., Microchem. J. 139, 210 (2018)

    Article  Google Scholar 

  3. D.-M. Kim, S.J. Cho, C.-H. Cho, K.B. Kim, M.-Y. Kim, Y.-B. Shim, Biosens. Bioelectron. 79, 165 (2016)

    Article  Google Scholar 

  4. M. Glanc-Gostkiewicz, M. Sophocleous, J.K. Atkinson, E. Garcia-Breijo, Sens. Actuators A 202, 2 (2013)

    Article  Google Scholar 

  5. B.C. Thompson, O. Winther-Jensen, B. Winther-Jensen, D.R. MacFarlane, Anal. Chem. 85, 3521 (2013)

    Article  Google Scholar 

  6. W. Lonsdale, M. Wajrak, K. Alameh, Talanta 180, 277 (2018)

    Article  Google Scholar 

  7. S.A.M. Marzouk, Anal. Chem. 75, 1258 (2003)

    Article  Google Scholar 

  8. T. Hashimoto, M. Miwa, H. Nasu, A. Ishihara, Y. Nishio, Electrochim. Acta 220, 699 (2016)

    Article  Google Scholar 

  9. B. Xu, W.-D. Zhang, Electrochim. Acta 55, 2859 (2010)

    Article  Google Scholar 

  10. L. Qingwen, L. Guoan, S. Youqin, Anal. Chim. Acta 409, 137 (2000)

    Article  Google Scholar 

  11. L.A. Pocrifka, C. Gonçalves, P. Grossi, P.C. Colpa, E.C. Pereira, Sens. Actuators B 113, 1012 (2006)

    Article  Google Scholar 

  12. A. Eftekhari, Sens. Actuators B 88, 234 (2003)

    Article  Google Scholar 

  13. R.H. Zhang, X.T. Zhang, S.M. Hu, Anal. Chem. 80, 2982 (2008)

    Article  Google Scholar 

  14. L. Santos, J.P. Neto, A. Crespo, D. Nunes, N. Costa, I.M. Fonseca et al., ACS Appl. Mater. Interfaces 6, 12226 (2014)

    Article  Google Scholar 

  15. N. Baig, T.A. Saleh, Microchim. Acta 185, 283 (2018)

    Article  Google Scholar 

  16. X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang et al., ACS Nano 6, 3206 (2012)

    Article  Google Scholar 

  17. C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun, X.S. Zhao, Energy Environ. Sci. 6, 1388 (2013)

    Article  Google Scholar 

  18. Y. Zhang, Y. Xu, J. Zhu, L. Li, X. Du, X. Sun, Carbon 127, 392 (2018)

    Article  Google Scholar 

  19. R. Singh, C.C. Tripathi, Mater. Today Proc. 5, 1125 (2018)

    Article  Google Scholar 

  20. P.C. Shi, J.P. Guo, X. Liang, S. Cheng, H. Zheng, Y. Wang et al., Carbon 126, 507 (2018)

    Article  Google Scholar 

  21. H. Wang, C. Wei, K. Zhu, Y. Zhang, C. Gong, J. Guo et al., ACS Appl. Mater. Interfaces 9, 34456 (2017)

    Article  Google Scholar 

  22. Q. Liu, M. Cheng, Y. Long, M. Yu, T. Wang, G. Jiang, J. Chromatogr. A 1325, 1 (2014)

    Article  Google Scholar 

  23. K. Chen, D. Xue, S. Komarneni, J. Colloid Interface Sci. 487, 156 (2017)

    Article  Google Scholar 

  24. R. Mohammad-Rezaei, S. Soroodian, Sens. Lett. 15, 729 (2017)

    Article  Google Scholar 

  25. J.P. Wilburn, M. Ciobanu, N.I. Buss, D.R. Franceschetti, D.A. Lowy, Anal. Chim. Acta 511, 83 (2004)

    Article  Google Scholar 

  26. H. Razmi, R. Mohammad-Rezaei, Electrochim. Acta 56, 7220 (2011)

    Article  Google Scholar 

  27. N. Cherchour, C. Deslouis, B. Messaoudi, A. Pailleret, Electrochim. Acta 56, 9746 (2011)

    Article  Google Scholar 

  28. F.T. Johra, J.-W. Lee, W.-G. Jung, J. Ind. Eng. Chem. 20, 2883 (2014)

    Article  Google Scholar 

  29. T. Cetinkaya, M. Tokur, S. Ozcan, M. Uysal, H. Akbulut, Int. J. Hydrog. Energy 41, 6945 (2016)

    Article  Google Scholar 

  30. X. Wang, Y. Li, Chem. Commun. 7, 764 (2002)

    Article  Google Scholar 

  31. H. Razmi, H. Heidari, E. Habibi, J. Solid State Electrochem. 12, 1579 (2008)

    Article  Google Scholar 

  32. W.E. Morf, E. Pretsch, N.F. de Rooij, J. Electroanal. Chem. 633, 137 (2009)

    Article  Google Scholar 

  33. P. Salvo, N. Calisi, B. Melai, B. Cortigiani, M. Mannini, A. Caneschi et al., Biosens. Bioelectron. 91, 870 (2017)

    Article  Google Scholar 

  34. L. Telli, B. Brahimi, A. Hammouche, Solid State Ionics 128, 255 (2000)

    Article  Google Scholar 

  35. J.A. Mihell, J.K. Atkinson, Sens. Actuators B 48, 505 (1998)

    Article  Google Scholar 

  36. Y.-C. Wu, S.-J. Wu, C.-H. Lin, Microsyst. Technol. 23, 293 (2017)

    Article  Google Scholar 

  37. W. Prissanaroon-Ouajai, P.J. Pigram, R. Jones, A. Sirivat, Sens. Actuators B 135, 366 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Research Council of Azarbaijan Shahid Madani University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Mohammad-Rezaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad-Rezaei, R., Soroodian, S. & Esmaeili, G. Manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode as a sensitive miniaturized pH sensor. J Mater Sci: Mater Electron 30, 1998–2005 (2019). https://doi.org/10.1007/s10854-018-0471-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0471-5

Navigation