Skip to main content
Log in

A novel strategy to produce compact and adherent thin films of SnO2/TiO2 composites suitable for water splitting and pollutant degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnO2/TiO2 composites have been widely studied as efficient photoanodes by various research groups around the globe. However, in this work, we display a novel and low cost strategy to synthesize thin films of such composites. According to the synthesizing strategy, various amounts of Degussa TiO2 P25 nanopowder ranging from 0.25 to 1.0 g were mixed to a fixed volume of SnO2 sol–gel solution. Then, the mixtures were spin-coated on doped tin oxide glass substrates. After a slow annealing at 500 °C, we obtained nanostructured SnO2/TiO2 composite thin films (CTFs). As-prepared CTFs were characterized by the scotch tape test, scanning electron microscope, X-ray diffraction and photoluminescence spectra. Furthermore, photoelectrochemical properties, photocatalytic activities and stability of all SnO2/TiO2 composite based PAs were studied. Results showed that composites with medium TiO2 amount exhibits more compact and adherent films than bare TiO2 films. We recorded an optimum situation for films prepared with 0.75 g of TiO2. It was proved that the SnO2 sol–gel method enabled compactness and adhesion of the processed composites. We correlated the photoluminescence intensity to the photocurrent density Jsc. The optimum Jsc, almost equal to 0.9 mA, was obtained in the case of 0.75 g amount of TiO2. This electrical performance is nearly nine times higher than that recorded with bare TiO2 photo-anodes. Moreover, replacing bare TiO2 photocatalyst by SnO2/TiO2 CTFs brought remarkable improvements to the photocatalytic degradation of methyl orange. Finally both morphological and mechanical properties of the composites were correlated to the stability and reusability of the CTF PAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

MO:

Metal oxide

PEC:

Photoelectrochemical

PA:

Photoanode

ITO:

Indium-doped tin oxide

CTHs:

Compact thin films

XRD:

X ray-diffraction

SEM:

Scanning electron microscope

PL:

Photoluminescence

LSV:

Linear sweep voltammogram

Jsc:

Short-circuit current density

J–V:

Photocurrent density–voltage

VOC :

Open circuit voltage

FF:

Fill factor

η:

Energy conversion efficiency

J–t:

Photocurrent–time

References

  1. A. Eftekhari, V.J. Babu, S. Ramakrishna, Photoelectrode nanomaterials for photoelectrochemical water splitting. Int. J. Hydrog. Energy 42, 11078–11109 (2017)

    Article  Google Scholar 

  2. E. Fortunato, D. Ginley, H. Hosono, D.C. Paine, Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242–247 (2007)

    Article  Google Scholar 

  3. P. Debashis, Y.T. Tseung, One-dimensional ZnO nanostructures: fabrication, optoelectronic properties and device applications. J. Mater. Sci. 48, 6849–6877 (2013)

    Article  Google Scholar 

  4. T. Dixit, A. Bilgaiyan, I.A. Palani, D. Nakamura, T. Okada, V. Singh, Influence of potassium permanganate on the anisotropic growth and enhanced UV emission of ZnO nanostructures using hydrothermal process for optoelectronic applications. J. Sol-Gel Sci. Technol. 75, 693 (2015)

    Article  Google Scholar 

  5. T. Dixit, I.A. Palani, V. Singh, Role of surface plasmon decay mediated hot carriers towards the photoluminescence tuning of metal coated ZnO nanorods. J. Phys. Chem. C 121, 3540 (2017)

    Article  Google Scholar 

  6. A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 20, 2791–2808 (2009)

    Article  Google Scholar 

  7. R. Vogel, P. Hoyer, H. Weller, Quantum-sized, PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 983, 183–3188 (1994)

    Google Scholar 

  8. S.U.M. Khan, Stability and photoresponse of nanocrystalline n-TiO[sub 2] and n-TiO[sub 2]∕Mn[sub 2]O[sub 3] thin film electrodes during water splitting reactions. J. Electrochem. Soc. 145, 89–93 (1998)

    Article  Google Scholar 

  9. J. Joy, J. Mathew, S.C. George, Nanomaterials for photoelectrochemical water splitting—review. Int. J. Hydrog. Energy 43, 4804–4817 (2018)

    Article  Google Scholar 

  10. X. Zong, C. Li, Photocatalytic water splitting on metal oxide-based semiconductor photocatalysts. Met. Oxides Heterogen. Catal. 2018, 355–399 (2018)

    Article  Google Scholar 

  11. D. Malwal, P. Gopinath, Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@CuO nanostructures towards the degradation of Congo red dye under solar radiation. Catal. Sci. Technol. 6, 4458–4472 (2016)

    Article  Google Scholar 

  12. X. Ding, L. Zhang, Y. Wang, A. Liu, Y. Gao, Design of photoanode-based dye-sensitized photoelectrochemical cells assembling with transition metal complexes for visible light-induced water splitting. Coord. Chem. Rev. 357, 130–143 (2018)

    Article  Google Scholar 

  13. J.-J. Lee, M. Mahbubur, S. Sarker, N.C. Deb, A.J. Saleh, J. Kwan, Metal oxides and their composites for the photoelectrode of dye sensitized solar cells. In Advances in Composite Materials for Medicine and Nanotechnology, (Intech, Rijeka, 2011), pp 182–210

    Google Scholar 

  14. Y. Chen, L. Hong, H.M. Xue, W.Q. Han, L.J. Wang, X.Y. Sun, J.S. Li, Preparation and characterization of TiO2-NTs/SnO2-Sb electrodes by electrodeposition. J. Electroanal. Chem. 648, 119–127 (2010)

    Article  Google Scholar 

  15. C.W. Cheng, H.F. Zhang, W.N. Ren, W.J. Dong, Y. Sun, Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode. Nano Energy 2, 779–786 (2013)

    Article  Google Scholar 

  16. Y. Hou, X. Li, X. Zou, X. Quan, G. Chen, Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation environmental. Sci. Technol. 43, 858–863 (2008)

    Article  Google Scholar 

  17. R. Wang, J. Bai, Y. Li, Q. Zeng, J. Li, B. Zhou, BiVO4/TiO2(N2) nanotubes heterojunctionphotoanode for highly efficient photoelectrocatalytic applications. Nano-Micro Lett. 9, 14 (2017)

    Article  Google Scholar 

  18. Y. Tu, J. Wu, M. Zheng, J. Huo, P. Zhou, Z. Lan, J. Lin, M. Huang, TiO2 quantum dots as superb compact block layers for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency of 16.97%. Nanoscale 7, 20539–20546 (2015)

    Article  Google Scholar 

  19. P. Zhai, H. Lee, Y.-T. Huang, T.-C. Wei, S.-P. Feng, Study on the blocking effect of a quantum-dot TiO2 compact layer in dye-sensitized solar cells with ionic liquid electrolyte under low intensity illumination. J. Power Sources 329, 502–509 (2016)

    Article  Google Scholar 

  20. M. Li, H. Sun, X. Liu, H. Sui, P. Liu, An efficient TiO2 electron transport layer for compact TiO2/polycrystalline BiFeO3 heterostructure thin film with enhanced photovoltaic performance. Mater. Lett. 219, 4–7 (2018)

    Article  Google Scholar 

  21. L. Lopez, W. Daoud, D. Dutta, B. Panther, T. Turney, Effect of substrate on surface morpholy and photocatalysis of large—scale TiO2 films. Appl. Surf. Sci. 265, 162–168 (2013)

    Article  Google Scholar 

  22. A. Realpe, D. Núñez, I. Carbal, M.T. Acevedo, G. De Avila, Preparation and characterization of titanium dioxide photoelectrodes for generation of hydrogen by photoelectrochemical water splitting. Int. J. Eng. Technol. 7, 753–759 (2015)

    Google Scholar 

  23. A.Y. Shan, T.I.M. Ghazi, S.A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl. Catal. 389, 1–8 (2010)

    Article  Google Scholar 

  24. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1, 1–21 (2000)

    Article  Google Scholar 

  25. C. Wang, C. Shao, X. Zhang, Y. Liu, SnO2 nanostructures TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties. Inorg. Chem. 48, 7261–7268 (2009)

    Article  Google Scholar 

  26. X. Li, C. Gao, H. Duan, B. Lu, Y. Wang, L. Chen et al., High performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure. Small 9, 2005–2011 (2013)

    Article  Google Scholar 

  27. M. Huang, J. Yu, B. Li, C. Deng, L. Wang, W. Wu, L. Dong, F. Zhang, Minguang Fan, Intergrowth and coexistence effects of TiO2–SnO2nanocomposite with excellent photocatalytic activity. J. Alloy. Compd. 629, 55–61 (2015)

    Article  Google Scholar 

  28. L.R. Hou, C.Z. Yuan, Y. Peng, Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. J. Hazard. Mater. 139, 310–315 (2007)

    Article  Google Scholar 

  29. L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, Z. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 164, 651–656 (2017)

    Article  Google Scholar 

  30. K. Wee, B.D. Sherman, K. Brennaman, M.V. Sheridan, A. Nayak, L. Alibabaei, T.J. Meyer, An aqueous, organic dye derivatized SnO2/TiO2 core/shell photoanode. J. Mater. Chem. A. 4, 2969–2975 (2015)

    Article  Google Scholar 

  31. J. Ramier, N. Da Costa, C.J.G. Plummer, Y. Leterrier, J.A.E. Månson, R. Eckert, R. Gaudiana, Cohesion and adhesion of nanoporous TiO2 coatings on titanium wires for photovoltaic applications. Thin Solid Films 516, 1913–1919 (2008)

    Article  Google Scholar 

  32. M. Grätzel, Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovolt Res. Appl. 8, 171 (2000)

    Article  Google Scholar 

  33. D.C. Hurum, K.A. Gray, T. Rajh, M.C. Thurnaue, Recombination pathways in the degussa P25 formulation of TiO2: surface versus lattice mechanisms. J. Phys. Chem. B 109, 977–980 (2005)

    Article  Google Scholar 

  34. S. Ngamsinlapasathiana, T. Sreethawongb, Y. Suzukia, S. Yoshikawa, Doubled layered ITO/SnO2 conducting glass for substrate of dye-sensitized solar cells. Sol. Energy Mater. Solar Cells 90, 2129–2140 (2006)

    Article  Google Scholar 

  35. L.F. Da Silva, O.F. Lopes, A.C. Catto, W. Avansi Jr., M.I.B. Bernardi, M.S. Li, C. Ribeirob, E. Longo, Hierarchical growth of ZnO nanorods over SnO2 seed layer: insights into electronic properties from photocatalytic activity. RSC Adv. 6, 2112 (2016)

    Article  Google Scholar 

  36. J.B. Naceur, M. Gaidi, F. Bousbih, R. Mechiakh, R. Chtourou, Annealing effects on microstructural and optical properties of Nanostructured-TiO2 thin films prepared by sol–gel technique. Curr. Appl. Phys. 12, 422–428 (2012)

    Article  Google Scholar 

  37. Y. Liang, S. Sun, T. Deng, H. Ding, W. Chen, Y. Chen, The preparation of TiO2 film by the sol-gel method and evaluation of its self-cleaning property. Materials 11, 450 (2018)

    Article  Google Scholar 

  38. L. Wang et al., Hierarchical SnO2 nanospheres: bio-inspired mineralization,vulcanization, oxidation techniques, and the application for NO sensors. Sci. Rep. 3, 3500 (2013)

    Article  Google Scholar 

  39. A. Fukuda, M. Ichimura, Heterostructure solar cells based on sol-gel deposited SnO2 and electrochemically deposited Cu2O. Mater. Sci. Appl. 4, 1 (2013)

    Google Scholar 

  40. L. Lv, X. Bai, Z. Ye, Construction of N-doped TiO2/SnO2heterostructured microspheres with dominant {001} facets for enhanced photocatalytic properties. CrystEngComm 18, 7580 (2016)

    Article  Google Scholar 

  41. Y. Chen, D.D. Dionysiou, Effect of calcination temperature on the photocatalytic activity and adhesion of TiO2 films prepared by the P-25 powder-modified sol–gel method. J. Mol. Catal. A 244, 73–82 (2006)

    Article  Google Scholar 

  42. J.S. Ogorevc, U.L. Stangar, P. Bukovec, Enhancement of photocatalytic activity of sol-gel TiO2 thin films with P25. Acta Chim. Slov. 55, 889–896 (2008)

    Google Scholar 

  43. F. Joudi, W. Chakhari, R. Ouertani, J. Ben Naceur, R. Chtourou, Enhancement of photoelectrochemical performance of CdSe sensitized seeded TiO2 films. J. Mater. Sci. 29, 16259–16269 (2018)

    Google Scholar 

  44. I.M.A. Mohamed et al., Synthesis of novel SnO2@TiO2 nanofibers as an efficient photoanode of dyesensitized solar cells. Int. J. Hydrog. Energy 41, 10578–10589 (2016)

    Article  Google Scholar 

  45. J. Kaur, R. Singh, B. Pal, Influence of coinage and platinum group metal co-catalysis for the photocatalytic reduction of m-dinitrobenzene by P25 and rutile TiO2. J. Mol. Catal. A 397, 99–105 (2014)

    Google Scholar 

  46. S. Mathew, A.K. Prasad, T. Benoy, P.P. Rakesh, M. Hari, T.M. Libish, P. Radhakrishnan, V.P.N. Nampoori, C.P.G. Vallabhan, UV-visible photoluminescence of TiO2 nanoparticles prepared by hydrothermal method. J. Fluoresc. 22, 1563 (2012)

    Article  Google Scholar 

  47. J. Nelson, R.E. Chandler, Random walk models of charge transfer and transport in dye sensitized systems. Coord. Chem. Rev. 248, 1181–1194 (2004)

    Article  Google Scholar 

  48. S. Yang, Y. Hou, J. Xing, B. Zhang, F. Tian, X.H. Yang, H.G. Yang, Ultrathin SnO2 scaffolds for TiO2-Based heterojunction photoanodes in dye-sensitized solar cells: oriented charge transport and improved light scattering. Chemistry 19, 9366–9370 (2013)

    Article  Google Scholar 

  49. I.A. Pronin, B.V. Donkova, D.T. Dimitrov, I.A. Averin, J.A. Pencheva, V.A. Moshnikov, Relationship between the photocatalytic and photoluminescence properties of zinc oxide doped with copper and manganese. Semiconductors 48, 842–847 (2014)

    Article  Google Scholar 

  50. S. Mathew, A.K. Prasad, T. Benoy, P.P. Rakesh, M. Hari, T.M. Libish, P. Radhakrishnan, V.P.N. Nampoori, C.P.G. Vallabhan, J. Fluoresc. 22, 1563 (2012)

    Article  Google Scholar 

  51. P. Chetri, P. Basyach, A. Choudhury, Structural, optical and photocatalytic properties of TiO2/SnO2 and SnO2/TiO2 core–shell nanocomposites: an experimental and DFT investigation. Chem. Phys. 434, 1–10 (2014)

    Article  Google Scholar 

  52. S. Ito, P. Liska, P. Comte, R. Charvet, P. Pe´chy, L. Schmidt-Mend, S.M. Zakeeruddin, A. Kay, M.K. Nazeeruddin, M. Gra¨tzel, Control of dark current in photoelectrochemical (TiO2/I–I3 ) and dye-sensitized solar cells. Chem. Commun. 34, 4351–4353 (2005)

    Article  Google Scholar 

  53. B.E. Hardin, H.J. Snaith, M.D. McGehe, The renaissance of dye-sensitized solar cells, review article. Nat. Photon. 6, 162–169 (2012)

    Article  Google Scholar 

  54. K. Ahn, D. Pham-Cong, H.S. Choi, S.Y. Jeong, J.H. Cho, J. Kim, J.P. Kim, J.S. Bae, C.R. Cho, Bandgap-designed TiO2/SnO2 hollow hierarchical nanofibers: Synthesis, properties, and their photocatalytic mechanism. Curr. Appl. Phys. 16, 251–260 (2016)

    Article  Google Scholar 

  55. R. Sivakumar, J. Ramkumar, S. Shaji, M. Paulraj, Efficient TiO2 blocking layer for TiO2nanorod arrays based dye sensitized solar cells. Thin Solid Films 720, 012036 (2016)

    Google Scholar 

  56. B. Parkinson, On the efficiency and stability of photoelectrochemical devices. Acc. Chem. Res. 17, 431–437 (1984)

    Article  Google Scholar 

  57. S. Huang, G. Schlichth€orl, A. Nozik, M. Gr€atzel, A. Frank, Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 101, 2576–2582 (1997)

    Article  Google Scholar 

  58. N. Karthikeyan, V. Narayanan, A. Stephen, Degradation of textile effluent using nanocomposite TiO2/SnO2 semiconductor photocatalysts. Int. J. Chem. Technol. Res. 8, 443–449 (2015)

    Google Scholar 

  59. T. Fotiou, T.M. Triantis, T. Kaloudis, K.E. O’Shea, D.D. Dionysiou, A. Hiskia, Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C–TiO2. Water Res. 90, 52 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ben Naceur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joudi, F., Naceur, J.B., Ouertani, R. et al. A novel strategy to produce compact and adherent thin films of SnO2/TiO2 composites suitable for water splitting and pollutant degradation. J Mater Sci: Mater Electron 30, 167–179 (2019). https://doi.org/10.1007/s10854-018-0278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0278-4

Navigation