Skip to main content
Log in

Development of oxyfluoroborate glass ceramics doped with Er3+ and Yb3+

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The preparation of oxyfluoroborate glasses and glass–ceramics doped with Yb3+ and Er3+ with improved luminescent properties is reported. Glasses with compositions (100 − x − y) (MO·2B2O3) + xPbF2 + y(YbF3:ErF3) (% in mol), where M is Sr, Ba, Ca, x = 10–40% and y = 0, 1 or 5% were prepared by the melt/quenching technique. Glass crystallization was studied using thermal analysis and X-ray diffraction techniques. Optical absorption and infrared up-conversion were studied on both glasses and glass–ceramics. The incorporation of a fluoride compound into the borate glass resulted to depend on the ionic radius of the glass modifier: as it increases, glasses become more stable against crystallization. On the other hand, alkali–fluoride compounds such as BaF2 and SrF2 can be crystallized from these systems by selecting an appropriate proportion between their components. Furthermore, the up-conversion response can be tuned by changing the glass modifiers (Sr, Ba and Ca) of the borate matrix, which also influence the type of fluoride crystallized compound. The strontium glass–ceramics have the highest luminescence response due to the crystallization of SrF2 compound in the system SrO–B2O3–PbF2. Meanwhile, the lowest luminescence signal was obtained for samples in the system BaO–B2O3–PbF2 where the Pb1.33Ba2.66B11FO20 phase crystallizes. With this strategy, new materials with improved luminescence properties that can be used as up converters, were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42(1), 173–201 (2013)

    Article  CAS  Google Scholar 

  2. W. Wang, H. Gao, Y. Mao, Highly matched spectrum needed for photosynthesis in Ce3+/Er3+/Yb3+ tri-doped oxyfluoride glass ceramics. J. Alloys Compd. 648, 75–78 (2015)

    Article  CAS  Google Scholar 

  3. L. Wondraczek et al., Solar spectral conversion for improving the photosynthetic activity in algae reactors. Nat. Commun. 4, 2047 (2013)

    Article  CAS  Google Scholar 

  4. M.C. Gonçalves, L.F. Santos, R.M. Almeida, Rare-earth-doped transparent glass ceramics. C. R. Chim. 5, 845–854 (2002)

    Article  Google Scholar 

  5. C. Rüssel, Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses. Chem. Mater. 17(23), 5843–5847 (2005)

    Article  CAS  Google Scholar 

  6. P.P. Fedorov, A.A. Luginina, A.I. Popov, Transparent oxyfluoride glass ceramics. J. Fluor. Chem. 172, 22–50 (2015)

    Article  CAS  Google Scholar 

  7. A. de Pablos-Martín, A. Durán, M.J. Pascual, Nanocrystallisation in oxyfluoride systems: mechanisms of crystallisation and photonic properties. Int. Mater. Rev. 57(3), 165–186 (2012)

    Article  CAS  Google Scholar 

  8. V.K. Tikhomirov et al., Optimizing Er/Yb ratio and content in ErYb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence. Sol. Energy Mater. Sol. Cells 100, 209–215 (2012)

    Article  CAS  Google Scholar 

  9. J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics—a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3, 510–535 (2015)

    Article  CAS  Google Scholar 

  10. Y. Wang, J. Ohwaki, New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl. Phys. Lett. 63(24), 3268–3270 (1993)

    Article  CAS  Google Scholar 

  11. G. Dantelle et al., Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics. J. Mater. Res. 20(2), 472–481 (2005)

    Article  CAS  Google Scholar 

  12. F. Zeng, G. Ren, X. Qiu, Q. Yang, Effect of different Er3+ compounds doping on microstructure and photoluminescent properties of oxyfluoride glass ceramics. Physica B 403 (13–16), 2417–2422 (2008).

    Google Scholar 

  13. Y. Ledemi, M. El Amraoui, J.L. Ferrari, P.-L. Fortin, S.J.L. Ribeiro, Y. Messaddeq, Infrared to visible up-conversion emission in Er3+/Yb3+ codoped fluoro-phosphate glass-ceramics. J. Am. Ceram. Soc. 96(3), 825–832 (2013)

    Article  CAS  Google Scholar 

  14. W.C. Wang, J. Yuan, X.Y. Liu, D.D. Chen, Q.Y. Zhang, Spectroscopic properties and energy transfer parameters of Yb3+/Tm3+ co-doped fluorogermanate glasses. J. Non Cryst. Solids 431, 154–158 (2016)

    Article  CAS  Google Scholar 

  15. F. Steudel, S. Loos, B. Ahrens, S. Schweizer, Quantum efficiency and energy transfer processes in rare-earth doped borate glass for solid-state lighting. J. Lumin. 170, 770–777 (2016)

    Article  CAS  Google Scholar 

  16. M. Rodriguez Chialanza et al., Correlation between structure, crystallization and thermally stimulated luminescence response of some borate glass and glass-ceramics. J. Non Cryst. Solids 427, 191–198 (2015)

    Article  CAS  Google Scholar 

  17. K. Shinozaki, W. Pisarski, M. Affatigato, T. Honma, T. Komatsu, Glass structure and NIR emission of Er3+ at 1.5 µm in oxyfluoride BaF2–Al2O3–B2O3 glasses. Opt. Mater. 50, 238–243 (2015)

    Article  CAS  Google Scholar 

  18. A.A. Cabral, A.A.D. Cardoso, E.D. Zanotto, Glass-forming ability versus stability of silicate glasses. I. Experimental test. J. Non. Cryst. Solids 320(1–3), 1–8 (2003).

    Google Scholar 

  19. A.C. Larson, R.B. Von, Dreele, General Structure Analysis System (GSAS) (Los Alamos National Laboratory, New Mexico, 1994)

    Google Scholar 

  20. B.H. Toby, A graphical user interface for GSAS. J. Appl. Crystallogr. 34(2), 210–213 (2001)

    Article  CAS  Google Scholar 

  21. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969)

    Article  CAS  Google Scholar 

  22. C.A. Gressler, J.E. Shelby, Properties and structure of PbO-PbF2-B2O3 glasses. J. Appl. Phys. 66(3), 1127–1131 (1989)

    Article  CAS  Google Scholar 

  23. Y.D. Yiannopoulos, G.D. Chryssikos, E.I. Kamitsos, Structure and properties of alkaline earth borate glasses. Phys. Chem. Glass 42(3), 164–172 (2001)

    CAS  Google Scholar 

  24. C.G. Bergeron, Crystal growth kinetics in binary borate melts, in Materials Science Research, vol. 12, ed. by V.D. Fréchette, L.D. Pye, N.J. Kreidl (Plenum Press, New york, 1978), pp. 445–462

    Google Scholar 

  25. L. Shartsis, H.F. Shermer, Surface tension, density, viscosity, and electrical resistivity of molten binary alkaline-earth borates. J. Am. Ceram. Soc. 37(11), 544–551 (1954)

    Article  Google Scholar 

  26. R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25(5), 925–946 (1969)

    Article  CAS  Google Scholar 

  27. J.A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1934)

    Google Scholar 

  28. A. Marotta, A. Buri, F. Branda, S. Saiello, Nulceation and crystallization of Li2O-2SiO2 glass—a DTA study, in Advances in Ceramics. Nucleation and Crystallization in Glasses, ed. by G.H. Beall, J.H. Simmons, D.R. Uhlman (American Ceramic Society, Westerville, 1982), pp. 146–152

    Google Scholar 

  29. V.M. Fokin, A.A. Cabral, R.M.C.V. Reis, M.L.F. Nascimento, E.D. Zanotto, Critical assessment of DTA–DSC methods for the study of nucleation kinetics in glasses. J. Non Cryst. Solids 356, 358–367 (2010)

    Article  CAS  Google Scholar 

  30. K. Matusita, S. Sakka, Y. Matsui, Determination of the activation energy for crystal growth by differential thermal analysis. J. Mater. Sci. 10(6), 961–966 (1975)

    Article  CAS  Google Scholar 

  31. M. Środa, I. Wacławska, L. Stoch, M. Reben, DTA/DSC study of nanocrystallization in oxyfluoride glasses. J. Therm. Anal. Calorim. 77(1), 193–200 (2004)

    Article  Google Scholar 

  32. M. Mortier, G. Patriarche, Structural characterisation of transparent oxyfluoride glass-ceramics. J. Mater. Sci. 35(19), 4849–4856 (2000)

    CAS  Google Scholar 

  33. H. Wu et al., Designing a deep ultraviolet nonlinear optical material with large second harmonic generation response. J. Am. Chem. Soc. 135(11), 4215–4218 (2013)

    Article  CAS  Google Scholar 

  34. D.P. Kudrjavtcev, Y.S. Oseledchik, A.L. Prosvirnin, N.V. Svitanko, Growth of a new strontium borate crystal Sr4B14O25. J. Cryst. Growth 254(3–4), 456–460 (2003).

    Google Scholar 

  35. B. Lai, L. Feng, J. Wang, Q. Su, Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses. Opt. Mater. 32(9), 1154–1160 (2010)

    Article  CAS  Google Scholar 

  36. V.D. Rodríguez, V.K. Tikhomirov, J. Méndez-Ramos, A.C. Yanes, V.V. Moshchalkov, Towards broad range and highly efficient down-conversion of solar spectrum by Er3+Yb3+ co-doped nano-structured glass-ceramics. Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010)

    Article  CAS  Google Scholar 

  37. M. Azam, V.K. Rai, P. Mishra, Enhanced frequency upconversion and non-colour tunability in Er3+–Yb3+ codoped TeO2–WO3–Pb3O4 glasses. J. Mater. Sci. Mater. Electron. 27(12), 12633–12641 (2016)

    Article  CAS  Google Scholar 

  38. T.S. Goncalves et al., Structure-property relations in new fluorophosphate glasses singly- and co-doped with Er3+ and Yb3+. Mater. Chem. Phys. 157, 45–55 (2015)

    Article  CAS  Google Scholar 

  39. M.-Y. Yoo, J.-H. Lee, H.-M. Jeong, K.-S. Lim, P. Babu, Enhancement of photoluminescence and upconversion in Er–Yb codoped nanocrystalline glass–ceramics. Opt. Mater. 35(11), 1922–1926 (2013)

    Article  CAS  Google Scholar 

  40. F. Steudel, S. Loos, B. Ahrens, S. Schweizer, Luminescent borate glass for efficiency enhancement of CdTe solar cells. J. Lumin. 164, 76–80 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Agencia Nacional de Investigación e Innovación” (Project Number ANII-PR-FSE-12013-1057), the “Comisión Sectorial de Investigación Científica” (CSIC), the “Programa de Desarrollo de Ciencias Básicas” (PEDECIBA), and the Brazilian agencies: FAPEG, CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rodríguez Chialanza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 106 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez Chialanza, M., Keuchkerian, R., Maia, L.J.Q. et al. Development of oxyfluoroborate glass ceramics doped with Er3+ and Yb3+. J Mater Sci: Mater Electron 29, 5472–5479 (2018). https://doi.org/10.1007/s10854-017-8514-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8514-x

Navigation